Аналитическая геометрия Функции нескольких переменных

Элементы векторной алгебры и аналитической геометрии

Исследование функции, построение графика

Далее займемся исследованием функций, применяя полученные знания.

Если в некоторой окрестности точки х0 выполняется неравенство f(x)<f(х0) или f(x) > f(х0), то точка х0 называется точкой экстремума функции f(x) (соответственно точкой максимума или минимума). Необходимое условие экстремума: если х0 – экстремальная точка функции f(x), то первая производная f’(х0) либо равна нулю или бесконечности, либо не существует. Достаточное условие экстремума: х0 является экстремальной точкой функции f(x), если ее первая производная f’(x) меняет знак при переходе через точку х0: с плюса на минус – при максимуме, с минуса на плюс – при минимуме.

Точка х0 называется точкой перегиба кривой y=f(х),если при переходе через точку х0 меняется направление выпуклости. Необходимое условие точки перегиба: если х0 – точка перегиба кривой y=f(х), то вторая производная f’’(х0) либо равна нулю или бесконечности, либо не существует. Достаточное условие точки перегиба: х0 является точкой перегиба кривой y=f(х), если при переходе через точку х0 вторая производная f’’(х) меняет знак.

Прямая yас=kх+b называется наклонной асимптотой кривой y=f(х), если расстояние от точки (x; f(х)) кривой до этой прямой стремится к нулю при х® Ґ . При этом

При k=0 имеем горизонтальную асимптоту:y=b.

Если

то прямая х=а называется вертикальной асимптотой.

Общая схема исследования функции и построения ее графика.

I. Элементарное исследование:

1) найти область определения функции;

2) исследовать функцию на симметричность и периодичность;

3) вычислить предельные значения функции в ее граничных точках;

4) выяснить существование асимптот;

5) определить, если это не вызовет особых затруднений, точки пересечения графика функции с координатными осями;

6) сделать эскиз графика функции, используя полученные результаты.

П. Исследование графика функции по первой производной:

1) найти решение уравнений y’(х)=0 и y’(х)=Ґ ;

2) точки, “подозрительные” на экстремум, исследовать с помощью достаточного условия экстремума, определить вид экстремума;

3) вычислить значения функции в точках экстремума;

4) найти интервалы монотонности функции;

5) нанести на эскиз графика экстремальные точки;

6) уточнить вид графика функции согласно полученным результатам.

Исследование графика функции по второй производной

Пример . Построить график функции , используя общую схему исследования функции.

Геометрической моделью векторной величины является прямолинейный отрезок с выбранным на нем направлением. В нашем курсе мы и будем иметь дело в основном с этой моделью, а потому прямолинейный отрезок, для которого указано, какая из ограничивающих его точек считается началом, какая концом, будем называть геометрическим вектором или просто вектором.
Элементы векторной алгебры