Математический анализ Формула Тейлора

 


Данная глава изучает формулу Тейлора -- способ приближённого представления числовой функции многочленом. Важность результатов этой главы выяснится при изучении математики в последующих семестрах, хотя некоторые важные следствия формулы Тейлора (например, оценки для формул приближённого дифференцирования) мы получаем уже в этой же главе. В следующих главах раздела "Математический анализ" в этом учебнике формула Тейлора также используется, хотя и не очень часто.

Формула Тейлора

Многочлен Тейлора Формула Маклорена Мы получили так называемую формулу Маклорена с остаточным членом в форме Лагранжа.

Коэффициенты Тейлора

Остаток в формуле Тейлора и его оценка

Остаток в формуле Тейлора в форме Лагранжа

Формула Тейлора для некоторых элементарных функций

Упражнение

Оценки ошибок в формулах приближённого дифференцирования

Используя оценку остаточного члена в форме Лагранжа, можно провести анализ погрешности в формулах приближённого дифференцирования, предполагая шаг $ h$ малым.

Пусть функция $ f(x)$ разложена по формуле Тейлора, с остаточным членом в форме Лагранжа, в точке $ x_0$. Положим $ x=x_0+h$, тогда

$\displaystyle f(x_0+h)=f(x_0)+f'(x_0)h+\frac{f''(x_{{\theta}})}{2}h^2.$

Отсюда

$\displaystyle f'(x_0)=\dfrac{f(x_0+h)-f(x_0)}{h}+{\varepsilon}(x_0;h),$

где

$\displaystyle {\varepsilon}(x_0;h)=\frac{f''(x_{{\theta}})}{2}h$ --

погрешность формулы приближённого дифференцирования, получающаяся при замене $ f'(x_0)$ на разностную производную $ \dfrac{f(x_0+h)-f(x_0)}{h}$.

Следовательно,

$\displaystyle \vert{\varepsilon}(x_0;h)\vert\leqslant \frac{m_2}{2}h,$

где

$\displaystyle m_2=\max_{x\in[x_0;x_0+h]}\vert f''(x)\vert.$

Как правило, заранее известна более грубая оценка для $ f''$ на некотором отрезке $ [a;b]$, включающем в себя $ [x_0;x_0+h]$:

$\displaystyle M_2=\max_{x\in[a;b]}\vert f''(x)\vert\geqslant m_2,$

и $ M_2$ не зависит от $ x_0$ и $ h$. Тогда

$\displaystyle \vert{\varepsilon}(x_0;h)\vert\leqslant \frac{M_2}{2}h;$

из этой оценки и определяют погрешность вычислений при данном шаге $ h$.

Аналогично, можно получить оценку погрешности для разностной производной вида

$\displaystyle \dfrac{f(x_0+h)-f(x_0-h)}{2h}.$

Ошибку $ {\varepsilon}(x_0;h)$ при замене $ f'(x_0)$ на это отношение можно оценить исходя из разложения $ f(x)$ в точке $ x_0$ по формуле Тейлора с остаточным членом в форме Лагранжа порядка 3:

$\displaystyle f(x_0+h)=f(x_0)+f'(x_0)h+\frac{f''(x_0)}{2}h^2+
\frac{f'''(x_{{\theta}})}{6}h^3,$

где $ x_{{\theta}}\in(x_0;x_0+h)$. Подставляя сюда $ -h$ вместо $ h$, получаем:

$\displaystyle f(x_0-h)=f(x_0)-f'(x_0)h+\frac{f''(x_0)}{2}h^2-
\frac{f'''(x_{{\theta}_1})}{6}h^3,$

 

 

Упражнения