Прямые линии и плоскости

 

Уравнение поверхности

Уравнение плоскости

Теорема Всякое уравнение(11.3), в котором $ \vert A\vert+\vert B\vert+\vert C\vert\ne0$ , является уравнением плоскости, ортогональной вектору $ {\bf n}=(A,B,C)$ .

Все коэффициенты и свободный член в уравнении отличны от нуля

Один из коэффициентов при неизвестных равен нулю

Два коэффициента при переменных равны нулю

Угол между плоскостями

Расстояние от точки до плоскости

Прямая на плоскости

Прямая в пространстве

Замечание Если в качестве параметра $ t$ взять время, то точка $ M$ будет двигаться по прямой со скоростью $ \vert{\bf p}\vert$ , причем в момент времент $ {t=0}$ ее положение совпадает с точкой $ M_0$ . Вектор скорости точки совпадает с вектором p.

Основные задачи на прямую и плоскость

Пример Найдите точку пересечения прямой $ \frac{x-2}2=\frac{y+1}{-1}=\frac{z-1}3$ и плоскости $ {x+y+2z-1=0}$ .

Даны уравнения двух прямых. Требуется найти угол между этими прямыми.

Пример Найдите точку $ M_1$ , симметричную точке $ M(1;-2;1)$ относительно прямой $ {\gamma}$ :