Дискретная математика Элементы высшей алгебры

Машиностроительное черчение
Черчение в строительной практике
Оформление чертежа
Эффективность виброзащиты
Построить проекции поверхности
вращения общего вида
Построить проекции прямого геликоида
Построить чертеж кондуктора
Построить чертеж крышки
Построить чертеж траверсы
Построить чертеж подвески
Общие сведения по резьбам
Выполнение сборочного чертежа
Сведения о материале деталей
Нанесение размеров на
сборочном чертеже
Плоская система сходящихся сил
Сопромат, термех
Пространственная система сил
Основные понятия и аксиомы статики
Основные понятия и аксиомы динамики
Элементы кинематики
Основные понятия сопративления материалов
Механические испытания материалов
Расчет бруса круглого поперечного
Плоскопаралельное движение твердого тела
Сопротивление усталости
Инженерная графика
Машиностроение
Графические обозначения материалов
в сечениях
Винтовые поверхности и изделия с резьбой
Винтовая линия
Винтовая лента
Построение проекции винтовой поверхности
Условные изобращения резьбы на чертежах
Многозаходные винты и резьбы
Виды резьб и их обозначения
Метрическая резьба
Трубная цилиндрическая резьба
Трубная коническая резьба
Упорная резьба
Сбег резьбы, фаски, проточки
Болты
Гайки
Винт
Шурупы
Шпилька
Пружинные шайбы
Соединения деталей болтом
Соединение деталей винтами
Упрощенные и условные изображения
резьбовых соединений
Резьбовые соединения труб
Соединения деталей - разъемные
и неразъемные
Резьбовые соединения
Соединение с применением штифтов
Чертежи деталей
Графическая часть чертежа
Нанесение размеров на чертежах деталей
Конструкторские и технологические базы
3 способа несения размеров элементов
деталей
Линейные и узловые размеры
При эскизировании и составлении рабочих
чертежей деталей
Основные сведения о допусках и посадках
Шероховатость поверхностей
и обозначение покрытий
Единая система допусков и посадок
Допуски формы и расположение поверхностей
Текстовые надписи на чертежах
Обозначение материалов на чертежах деталей
Выполнение эскизов деталей
Нанесение изображений элементов детали
Выполнение рабочих чертежей деталей
Выбор главного вида и числа изображений
Чертежи детали, изготовленной литьем
Чертеж детали, изготовленный из пластмассы
Чертежи пружин
Нутромер
Штангенциркуль
Математика
Функции
Вычисление пределов
Непрерывность функций
Производные
Дифференциалы
Математический анализ
Анализ функций
Корни уравнений
Алгебра
Линии и плоскости
Поверхности
Операции с матрицами
Комплексные числа
Матрицы
Дифференцироание функций
Линейные уравнения
Электротехника
Adobe Acrobat
Adobe FrameMaker
Adobe After Effects
Типы локальных сетей
Adobe Illustrator

Ядерные реакторы

Первый ядерный уран-графитовый реактор
Основные технические характеристики РБМК
Водо-водяной реатор, ВВЭР
Реаторы третьего поколения ВВЭР-1500
Реакторы на быстрых нейтронах
Промышленные реакторы
Исследовательские ядерные реакторы
Реактор БОР-60
Многопетлевой кипящий энергетический
реактор МКЭР-800
Реактор БРЕСТ
Безопасный быстрый реактор РБЕЦ
Тепловой реактор с внутренней
безопасностью
Энергетическая установка ГТ-МГР
Корпусной реактор ПРБЭР-600
ВВЭР-640 (В-407)
АРГУС

Физика

Электрическое поле
Решение задач по физике примеры
Строение и общие свойства атомных ядер
Модели атомных ядер
Ядерные реакции
Ядерная физика
Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Деление и синтез ядер
Квантовая механика
Спин, момент импульса
Атом водорода Принцип Паули

Информатика

Принципы функционирования глобальных
и локальных сетей
Информационно-вычислительные сети
Электротехника
Расчёт электрического поля
Расчёт магнитной цепи
Законы Кирхгофа
Расчёт электрических цепей
Расчёт трёхфазных цепей
Промышленная электроника
Трехфазные электрические цепи
Примеры выполнения курсовой работы по электротехнике
Методика расчёта линейных электрических цепей
Электротехника лекции
Элементы электрических цепей
Топология электрических цепей.
Переменный ток
Векторные диаграммы
Методы контурных токов и узловых потенциалов.
Основы матричных методов расчета электрических цепей
Мощность в электрических цепях
Резонансные явления
Векторные и топографические диаграммы
Анализ цепей с индуктивно связанными элементами.
Особенности составления матричных уравнений
Метод эквивалентного генератора

Элементы комбинаторики

Бином Ньютона. (полиномиальная формула)

Пример

Элементы математической логики

Конъюнкция Дизъюнкция

Импликация Эквиваленция

Поверхностный интеграл второго рода К понятию поверхностного интеграла 2-го рода приводит физическая задача о вычислении потока жидкости через некоторую поверхность S. При этом, в каждой точке поверхности S задаётся векторная функция (x,y,z) скорости жидкости. Поверхность S называется двусторонней, если нормаль к поверхности при обходе по любому замкнутому контуру, лежащему на поверхности S, возвращается в первоначальное положение. Сторона поверхности S задаётся выбором направления нормали к поверхности, в этом случае поверхность называется ориентированной. Примеры решения и офомления задач контрольной работы по высшей математике

Примеры

Булевы функции

Исчисление предикатов

Интегральное исчисление

Конечные графы и сети. Основные определения

Матрицы графов

Примеры

Достижимость и связность.

Деревья и циклы

Элементы топологии

Открытые и замкнутые множества

Непрерывные отображения

Пусть Е и F – топологические пространства, и пусть f – отображение пространства Е в F.

f: E ® F.

 Непрерывность отображения состоит в том, что точки, близкие друг к другу в множестве Е, отодражаются в точки, близкие друг к другу в множестве F.

 Определение. Отображение f: E ® F называется непрерывным в точке р, если для любой окрестности V точки f(p) в множестве F существует такая окрестность U точки в множестве Е, что f(U) Ì V. Отображение f называется непрерывным, если оно непрерывно в каждой точке пространства Е.

 Особое значение имеют те непрерывности отображения, для которых существует непрерывное обратное отображение.

 Определение. Если f – взаимно одноначное отображение пространства Е в F, то существует обратное отображение g пространства F в E. Если и f и g непрерывны, то отбражение f называется гомеоморфизмом, а пространства Е и Fгомеоморфные.

Топологические произведения

Введение в математический анализ

Числовая последовательность

Определение

Ограниченные и неограниченные последовательности

Монотонные последовательности

Число е

Связь натурального и десятичного логарифмов

Предел функции при стремлении аргумента к бесконечности

Основные теоремы о пределах

Бесконечно малые функции

Бесконечно большие функции и их связь с бесконечно малыми

Свойства эквивалентных бесконечно малых

Некоторые замечательные пределы

Пример

Непрерывность функции в точке

Непрерывность некоторых элементарных функций

Точки разрыва и их классификация

Свойства функций, непрерывных на отрезке

Пример

Комплексные числа

 Понятие комплексного числа имеет геометрическое истолкование. Множество комплексных чисел является расширением множества действительных чисел за счет включения множества мнимых чисел. Комплексные числа включают в себя все множества чисел, которые изучались ранее. Так натуральные, целые, рациональные, иррациональные, действительные числа являются, вообще говоря, частными случаями комплексных чисел.

 Если любое действительное число может быть геометрически представлено в виде точки на числовой прямой, то комплексное число представляется точкой на плоскости, координатами которой будут соответственно действительная и мнимая части комплексного числа. При этом горизонтальная ось будет являться действительной числовой осью, а вертикальная - мнимой осью.

Тригонометрическая форма числа

Возведение в степень

Показательная форма комплексного числа

Разложение многочлена на множители

Пример

Элементы высшей алгебры

Основные понятия теории множеств

Операции над множествами

Пример

Отношения и функции

 Определение. Упорядоченной парой (a, b) двух элементов a и b называется множество {{a},{a, b}}.

 Для любых элементов a, b, c, d справедливо соотношение:

 

 Определение. Декартовым произведением множеств А и В называется множество всех упорядоченных пар (a, b), где аÎА, bÎB.

 

 

 Декартово произведение п равных множеств А будет называться п – й декартовой степенью множества А и обозначаться Аn.

Алгебраические структуры