Курс лекций по разделу Аналитическая геометрия

Машиностроительное черчение
Черчение в строительной практике
Оформление чертежа
Эффективность виброзащиты
Построить проекции поверхности
вращения общего вида
Построить проекции прямого геликоида
Построить чертеж кондуктора
Построить чертеж крышки
Построить чертеж траверсы
Построить чертеж подвески
Общие сведения по резьбам
Выполнение сборочного чертежа
Сведения о материале деталей
Нанесение размеров на
сборочном чертеже
Плоская система сходящихся сил
Сопромат, термех
Пространственная система сил
Основные понятия и аксиомы статики
Основные понятия и аксиомы динамики
Элементы кинематики
Основные понятия сопративления материалов
Механические испытания материалов
Расчет бруса круглого поперечного
Плоскопаралельное движение твердого тела
Сопротивление усталости
Инженерная графика
Машиностроение
Графические обозначения материалов
в сечениях
Винтовые поверхности и изделия с резьбой
Винтовая линия
Винтовая лента
Построение проекции винтовой поверхности
Условные изобращения резьбы на чертежах
Многозаходные винты и резьбы
Виды резьб и их обозначения
Метрическая резьба
Трубная цилиндрическая резьба
Трубная коническая резьба
Упорная резьба
Сбег резьбы, фаски, проточки
Болты
Гайки
Винт
Шурупы
Шпилька
Пружинные шайбы
Соединения деталей болтом
Соединение деталей винтами
Упрощенные и условные изображения
резьбовых соединений
Резьбовые соединения труб
Соединения деталей - разъемные
и неразъемные
Резьбовые соединения
Соединение с применением штифтов
Чертежи деталей
Графическая часть чертежа
Нанесение размеров на чертежах деталей
Конструкторские и технологические базы
3 способа несения размеров элементов
деталей
Линейные и узловые размеры
При эскизировании и составлении рабочих
чертежей деталей
Основные сведения о допусках и посадках
Шероховатость поверхностей
и обозначение покрытий
Единая система допусков и посадок
Допуски формы и расположение поверхностей
Текстовые надписи на чертежах
Обозначение материалов на чертежах деталей
Выполнение эскизов деталей
Нанесение изображений элементов детали
Выполнение рабочих чертежей деталей
Выбор главного вида и числа изображений
Чертежи детали, изготовленной литьем
Чертеж детали, изготовленный из пластмассы
Чертежи пружин
Нутромер
Штангенциркуль
Математика
Функции
Вычисление пределов
Непрерывность функций
Производные
Дифференциалы
Математический анализ
Анализ функций
Корни уравнений
Алгебра
Линии и плоскости
Поверхности
Операции с матрицами
Комплексные числа
Матрицы
Дифференцироание функций
Линейные уравнения
Электротехника
Adobe Acrobat
Adobe FrameMaker
Adobe After Effects
Типы локальных сетей
Adobe Illustrator

Ядерные реакторы

Первый ядерный уран-графитовый реактор
Основные технические характеристики РБМК
Водо-водяной реатор, ВВЭР
Реаторы третьего поколения ВВЭР-1500
Реакторы на быстрых нейтронах
Промышленные реакторы
Исследовательские ядерные реакторы
Реактор БОР-60
Многопетлевой кипящий энергетический
реактор МКЭР-800
Реактор БРЕСТ
Безопасный быстрый реактор РБЕЦ
Тепловой реактор с внутренней
безопасностью
Энергетическая установка ГТ-МГР
Корпусной реактор ПРБЭР-600
ВВЭР-640 (В-407)
АРГУС

Физика

Электрическое поле
Решение задач по физике примеры
Строение и общие свойства атомных ядер
Модели атомных ядер
Ядерные реакции
Ядерная физика
Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Деление и синтез ядер
Квантовая механика
Спин, момент импульса
Атом водорода Принцип Паули

Информатика

Принципы функционирования глобальных
и локальных сетей
Информационно-вычислительные сети
Электротехника
Расчёт электрического поля
Расчёт магнитной цепи
Законы Кирхгофа
Расчёт электрических цепей
Расчёт трёхфазных цепей
Промышленная электроника
Трехфазные электрические цепи
Примеры выполнения курсовой работы по электротехнике
Методика расчёта линейных электрических цепей
Электротехника лекции
Элементы электрических цепей
Топология электрических цепей.
Переменный ток
Векторные диаграммы
Методы контурных токов и узловых потенциалов.
Основы матричных методов расчета электрических цепей
Мощность в электрических цепях
Резонансные явления
Векторные и топографические диаграммы
Анализ цепей с индуктивно связанными элементами.
Особенности составления матричных уравнений
Метод эквивалентного генератора

Уравнение линии на плоскости

Уравнение прямой по точке и вектору нормали

Уравнение прямой по точке и направляющему вектору

Нормальное уравнение прямой

Угол между прямыми на плоскости

 Определение. Если заданы две прямые y = k1x + b1y = k2x + b2, то острый угол между этими прямыми будет определяться как . Две прямые параллельны, если k1 = k2. Две прямые перпендикулярны, если k1 = -1/k2.  

примеры

Кривые второго порядка.

Гипербола

Пример

Парабола

Системы координат

Полярная система координат

Уравнение кривой в полярной системе координат

Цилиндрическая и сферическая системы координат

Аналитическая геометрия в пространстве

 Как на плоскости, так и в пространстве, любая линия может быть определена как совокупность точек, координаты которых в некоторой выбранной в пространстве системе координат удовлетворяют уравнению:

 

F(x, y, z) = 0.

 Это уравнение называется уравнением линии в пространстве.

 Кроме того, линия в пространстве может быть определена и иначе. Ее можно рассматривать как линию пересечения двух поверхностей, каждая из которых задана каким- либо уравнением.

  Пусть F(x, y, z) = 0 и Ф(x, y, z) = 0 – уравнения поверхностей, пересекающихся по линии L.

  Тогда пару уравнений

назовем уравнением линии в пространстве.

Параметрическое уравнение прямой

Уравнение прямой в пространстве, проходящей через две точки

 Пример. Найти каноническое уравнение, если прямая задана в виде:

Угол между плоскостями.

Условия параллельности и перпендикулярности прямых в пространстве

Линейное (векторное) пространство

Свойства линейных пространств

Примеры

Матрицы линейных преобразований

Примеры

Условия параллельности и перпендикулярности прямой и плоскости в пространстве

Собственные значения и собственные векторы линейного преобразования

Рассмотрим частный случай.

Пример. Найти характеристические числа и собственные векторы линейного преобразования с матрицей А = .

Пример

Квадратичные формы

Привести к каноническому виду квадратичную форму Ф(х1, х2) = 27.

Используя теорию квадратичных форм, привести к каноническому виду уравнение линии второго порядка.

Линейная алгебра.

Основные определения

Операция умножения матриц

примеры

Определители ( детерминанты)

примеры

Элементарные преобразования

Cвойства обратных матриц

Базисный минор матрицы. Ранг матрицы.

Матричный метод решения систем линейных уравнений

Метод Крамера

Метод Крамера. (Габриель Крамер (1704-1752) швейцарский математик) Данный метод также применим только в случае систем линейных уравнений, где число переменных совпадает с числом уравнений. Кроме того, необходимо ввести ограничения на коэффициенты системы. Необходимо, чтобы все уравнения были линейно независимы, т.е. ни одно уравнение не являлось бы линейной комбинацией остальных. Для этого необходимо, чтобы определитель матрицы системы не равнялся 0. det A ¹ 0; Действительно, если какое- либо уравнение системы есть линейная комбинация остальных, то если к элементам какой- либо строки прибавить элементы другой, умноженные на какое- либо число, с помощью линейных преобразований можно получить нулевую строку.

примеры

Решение произвольных систем линейных уравнений

Элементарные преобразования систем

Метод Гаусса

Элементы векторной алгебры

Определение

Линейная зависимость векторов

примеры

Линейные операции над векторами в координатах

примеры

Векторное произведение векторов

примеры

Смешанное произведение векторов

Уравнение поверхности в пространстве

Уравнение плоскости по двум точкам и вектору, коллинеарному плоскости

Уравнение плоскости в отрезках

примеры