Испытание на сжатие образцов из различных материалов
Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную Стриптиз от сексапильных путан Барнаула http://barnaul.prostitutki.fit/girls-services/striptiz/ понравится не только ценителям

Курс лекций по разделу физика атома и ядра

Радиоактивные семейства ( ряды )

Все естественные радиоактивные нуклиды с А > 209 можно расположить в виде трех последовательных цепочек, называемых радиоактивными семействами или рядами. Каждое радиоактивное семейство начинается с a-радиоактивного нуклида, называемым родоначальником семейства, а каждый радиоактивный последующий элемент семейства является продуктом распада предыдущего.

Частицы и античастицы Гипотеза об античастице впервые возникла в 1928 г., когда П. Дирак на основе релятивистского волнового уравнения предсказал существование позитрона, обнаруженного спустя четыре года К. Андерсеном в составе космического излучения. Электрон и позитрон не являются единственной парой частица — античастица.

Переход от одного элемента к другому в пределах семейства может быть описан изменением массового числа в виде формулы, называемой правилом смещения:

А = 4п + С ,

3.1.1

где С - постоянная для данного семейства величина, а n- либо уменьшается на единицу (при a-распаде), либо не изменяется (при b-распаде). На рис. 3.1.1 показано семейство урана. Стрелки на диаграмме (A, Z), направленные влево и вниз обозначают a-распады,

 

 


направленные вверх - b-распады. Возле каждой из жирных стрелок, обозначающих основную цепочку распада, приведены соответствующие периоды полураспада. Начинается это семейство с , который с периодом полураспада T1/2 = 4,5×109 лет путем a-распада превращается в (торий), который, в свою очередь, путем b--распада с Т1/2 = 24 дня превращается в  (протактиний). Протактиний, в свою очередь, с Т1/2 = 1,2 минуты превращается в . Следует обратить внимание на огромное различие в периодах полураспада в первом и втором звеньях ряда. Это различие типично и для остальных радиоактивных семейств. Некоторые нуклиды, входящие в семейства, могут с разной вероятностью испытывать как a-, так и b-распады. На схеме рис. 3.1.1 они образуют т.н. вилки. Семейство урана заканчивается стабильным нуклидом свинца , ядро которого является магическим по числу протонов. Остальные семейства имеют аналогичные характеристики, которые представлены в таблице 3.1.1. Во второй строке этой таблицы даны характеристики не существующего в природе семейства. Родоначальником этого семейства является искусственно получаемый в ядерных реакторах или в ядерных взрывах трансурановый элемент плутоний , но название это семейство получило по имени первого долгоживущего нуклида (период полураспада 2,2·106лет). Название актиноуранового семейства произошло от старого, уже вышедшего из употребления, наименования нуклида 235U.

 

 

Подпись: Таблица 3.1.1
Название семейства	Первый элемент	Последний элемент	nmax	nmin	C
Тория	 
 
58	52	0
Нептуния	 
 
59	52	1
Урана	 
 
59	51	2
Актиноурана	 
 
58	51	3


Последними элементами всех четырех радиоактивных семейств являются стабильные магические (следовательно, особо устойчивые) нуклиды свинца и висмута.

Естественные более легкие радиоактивные ядра, чем нуклиды радиоактивных семейств, которые не успели распасться с момента образования и до настоящего времени, непрерывно образуются под действием космического излучения. Например, под действием космического излучения атмосферный азот 14N превращается в b-активный углерод 14C с периодом полураспада 5730 лет. Измерение содержания этого нуклида в древних органических останках (скелетах, мумиях, деревянных предметах и т.п.) позволяет археологам определять возраст этих предметов.

Ядерные реакции. Сечение реакции. Нейтроны и деление атомных ядер. Закон Бете для сечения захвата медленных частиц. Резонансный характер ядерных реакций. Составное ядро. Ядерные реакции, идущие через составное ядро. Законы сохранения в ядерных реакциях. Эффект Мёссбаура.