Производные гиперболических функций
Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную Классичеcкий секс - лучшая уcлуга от путан Читы http://prostitutkichity.biz/types-services/klassicheckij-seks/ запомнится на всю жизнь|Молоденькие проститутки Железнодорожного района http://ryazan.prostitutki.buzz/locations/zheleznodorozhnyj/ покажут вам вселенную наслаждения|Сексуальные услады от девочек Ленинского района http://prostitutkibarnaula.biz/area/leninskij/ откроют для вас мир секса

Курс лекций по разделу физика атома и ядра

Энергетический порог

Далее построение векторной диаграммы импульсов для упругого рассеяния не имеет особенностей и выполняется аналогичным образом.

Приведем теперь несколько примеров применения законов сохранения в ядерных реакциях.

Определим энергетический порог для эндоэнергетической реакции. Используя систему центра инерции и формулу (4.4.6), имеем

(4.5.22)

и, следовательно, минимальное значение  (когда ) составит

.

(4.5.23)

Используя (4.5.10) найдем минимальную кинетическую энергию частицы а в лабораторной системе координат (ЛСК):

.

(4.5.24)

Полученное значение кинетической энергии бомбардирующей частицы в ЛСК, при котором становится возможным протекание эндоэнергетической реакции, называется порогом реакции. На рис. 4.4.1а приведена энергетическая диаграмма для экзоэнергетической реакции (Q > 0), а на рис. 4.4.1б - для эндоэнергетической реакции (Q < 0). На диаграммах изображен процесс образования промежуточного возбужденного ядра  и его распад с образованием частиц B и b для обоих типов реакций. εа = MA + ma - Mc– есть энергия связи частицы а, а  εb = MB + mb - Mc– частицы bотносительно промежуточного ядра Мссоответственно.

Получим энергию(4.2.2) возбужденния промежуточного ядра

,

(4.5.25)

где массы основного и возбужденного состояний промежуточного ядра выражены в энергетических единицах, а звездочка означает возбужденное состояние.

Пусть ядро-мишень А покоится. Запишем законы сохранения энергии и импульса для первой стадии реакции

a + A ®С*

(4.5.26)

- образования промежуточного ядра:

,

Рa = Рс.

(4.5.27)

Будем рассматривать реакции для нерелятивистского случая малых энергий налетающей частицы (Та ≈ 10 МэВ << ma). Тогда

.

(4.5.28)

Подставляя (4.5.28) в (4.5.27), получаем квадратное уравнение для нахождения :

.

(4.5.29)

В(4.5.29) последнее слагаемое составляет ничтожную долю от первых двух, так как . Поэтому в качестве первого приближения принимаем . Для получения второго приближения подставляем это выражение в (4.5.29). Получаем

.

(4.5.30)

Подставив (4.5.30) в (4.5.25), получим формулу

.

(4.5.31)

Первый член в этом выражении есть ни что иное, как энергия связи  частицы апо отношению к промежуточному ядру (см. (1.4.4)). Второй - суммарная кинетическая энергия частиц a и А до реакции в системе центра инерции. Итак,

(4.5.32)

 

Связь классической и квантовой физики. Постулаты и принцип соответствия Бора. Экспериментальное доказательство дискретной структуры атомных уровней. Опыты Франка и Герца. Спектр водородоподобных атомов. Систематика состояний атома водорода.Постоянная Ридберга. Позитроний. . Квантование момента импульса и его проекции. Колебательные и вращательные уровни молекул.