Законы радиоактивного распада

Машиностроительное черчение
Черчение в строительной практике
Оформление чертежа
Эффективность виброзащиты
Построить проекции поверхности
вращения общего вида
Построить проекции прямого геликоида
Построить чертеж кондуктора
Построить чертеж крышки
Построить чертеж траверсы
Построить чертеж подвески
Общие сведения по резьбам
Выполнение сборочного чертежа
Сведения о материале деталей
Нанесение размеров на
сборочном чертеже
Плоская система сходящихся сил
Сопромат, термех
Пространственная система сил
Основные понятия и аксиомы статики
Основные понятия и аксиомы динамики
Элементы кинематики
Основные понятия сопративления материалов
Механические испытания материалов
Расчет бруса круглого поперечного
Плоскопаралельное движение твердого тела
Сопротивление усталости
Инженерная графика
Машиностроение
Графические обозначения материалов
в сечениях
Винтовые поверхности и изделия с резьбой
Винтовая линия
Винтовая лента
Построение проекции винтовой поверхности
Условные изобращения резьбы на чертежах
Многозаходные винты и резьбы
Виды резьб и их обозначения
Метрическая резьба
Трубная цилиндрическая резьба
Трубная коническая резьба
Упорная резьба
Сбег резьбы, фаски, проточки
Болты
Гайки
Винт
Шурупы
Шпилька
Пружинные шайбы
Соединения деталей болтом
Соединение деталей винтами
Упрощенные и условные изображения
резьбовых соединений
Резьбовые соединения труб
Соединения деталей - разъемные
и неразъемные
Резьбовые соединения
Соединение с применением штифтов
Чертежи деталей
Графическая часть чертежа
Нанесение размеров на чертежах деталей
Конструкторские и технологические базы
3 способа несения размеров элементов
деталей
Линейные и узловые размеры
При эскизировании и составлении рабочих
чертежей деталей
Основные сведения о допусках и посадках
Шероховатость поверхностей
и обозначение покрытий
Единая система допусков и посадок
Допуски формы и расположение поверхностей
Текстовые надписи на чертежах
Обозначение материалов на чертежах деталей
Выполнение эскизов деталей
Нанесение изображений элементов детали
Выполнение рабочих чертежей деталей
Выбор главного вида и числа изображений
Чертежи детали, изготовленной литьем
Чертеж детали, изготовленный из пластмассы
Чертежи пружин
Нутромер
Штангенциркуль
Математика
Функции
Вычисление пределов
Непрерывность функций
Производные
Дифференциалы
Математический анализ
Анализ функций
Корни уравнений
Алгебра
Линии и плоскости
Поверхности
Операции с матрицами
Комплексные числа
Матрицы
Дифференцироание функций
Линейные уравнения
Электротехника
Adobe Acrobat
Adobe FrameMaker
Adobe After Effects
Типы локальных сетей
Adobe Illustrator

Ядерные реакторы

Первый ядерный уран-графитовый реактор
Основные технические характеристики РБМК
Водо-водяной реатор, ВВЭР
Реаторы третьего поколения ВВЭР-1500
Реакторы на быстрых нейтронах
Промышленные реакторы
Исследовательские ядерные реакторы
Реактор БОР-60
Многопетлевой кипящий энергетический
реактор МКЭР-800
Реактор БРЕСТ
Безопасный быстрый реактор РБЕЦ
Тепловой реактор с внутренней
безопасностью
Энергетическая установка ГТ-МГР
Корпусной реактор ПРБЭР-600
ВВЭР-640 (В-407)
АРГУС

Физика

Электрическое поле
Решение задач по физике примеры
Строение и общие свойства атомных ядер
Модели атомных ядер
Ядерные реакции
Ядерная физика
Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Деление и синтез ядер
Квантовая механика
Спин, момент импульса
Атом водорода Принцип Паули

Информатика

Принципы функционирования глобальных
и локальных сетей
Информационно-вычислительные сети
Электротехника
Расчёт электрического поля
Расчёт магнитной цепи
Законы Кирхгофа
Расчёт электрических цепей
Расчёт трёхфазных цепей
Промышленная электроника
Трехфазные электрические цепи
Примеры выполнения курсовой работы по электротехнике
Методика расчёта линейных электрических цепей
Электротехника лекции
Элементы электрических цепей
Топология электрических цепей.
Переменный ток
Векторные диаграммы
Методы контурных токов и узловых потенциалов.
Основы матричных методов расчета электрических цепей
Мощность в электрических цепях
Резонансные явления
Векторные и топографические диаграммы
Анализ цепей с индуктивно связанными элементами.
Особенности составления матричных уравнений
Метод эквивалентного генератора

 

Учебное пособие по курсу "Ядерная и нейтронная физика"

Радиоактивность

Задача 2.1 Найти вероятность распада радиоактивного ядра за промежуток времени t, если известна его постоянная распада

Задача 2.2 Показать, что среднее время жизни радиоактивных ядер τ = 1/λ, где λ – их постоянная распада.

Задача 2.3 Какая доля первоначального количества ядер 90Sr: а) останется через 10 и 100 лет; б) распадется за одни сутки; за 15 лет?

Задача 2.4 Вычислить постоянную распада, среднее время жизни и период полу распада радиоактивного нуклида, активность которого уменьшается в 1,07 раза за 100 дней.

Задача 2.5 Определить возраст древних деревянных предметов, у которых удельная активность 14С составляет 3/5 удельной активности этого же нуклида в только что срубленных деревьях.

Задача 2.6 Свежеприготовленный препарат содержит 1,4 мкг радиоактивного нуклида 24Nа. Какую активность он буде иметь через сутки?

Задача 2.7 Определить число радиоактивных ядер в свежеприготовленном препарате 82Br, если известно, через сутки его активность стала равной 7,4·10-9 Бк (0,4 Ки).

Задача 2.8 Вычислить удельную активность чистого 239Pu.

Задача 2.9 Сколько миллиграмм β-активного 90Sr следует добавить к 1 мг неактивного стронция, чтобы удельная активность препарата стала равной 6,8 Ки/г?

Задача 2.10 В кровь человека ввели небольшое количество раствора, содержащего 24Nа активностью А0 = 2,1·103 Бк. Активность одного см-3 крови, взятой через t = 5 ч после этого, оказалась равной а = 0,28 Бк/см3. Найти объем крови человека

Задача 2.11 При радиоактивном распаде ядер нуклида А1 образуется радионуклид А2. Их постоянные распада равны λ1 и λ2. Полагая, что в начальный момент препарат содержал только ядра нуклида А1 в количестве N01, определить:

а) количество ядер нуклида А2 через промежуток времени t;

б) промежуток времени, через который количество ядер нуклида А2 достигнет максимума;

в) в каком случае может возникнуть состояние переходного равновесия, когда относительное количество обоих нуклидов будет оставаться постоянным. Чему равно это отношение?

Задача 2.12 226Ra, являясь продуктом распада 238U, содержится в последнем в количестве одного атома на каждые 2,80·106 атомов 238U. Найти период полураспада 238U, если известно, что он значительно больше периода полураспада 226Ra, который равен 1620 годам.

Задача 2.13 При β-распаде 112Pd возникает β-активный нуклид 112Ag. Их периоды полураспада равны соответственно 21 и 3,2 ч. Найти отношение максимальной активности нуклида 112Pd к первоначальной активности препарата, если в начальный момент препарат содержал только нуклид 112Ag. 

Задача 2.14 Радионуклид испытывает превращение по цепочке

Задача 2.15 Определить массу свинца, который образуется из 1,0 кг 238U за период, равный возрасту Земли (2,5·109 лет).

Задача 2.16 Радионуклид 27Mg образуется с постоянной скоростью q = 5,0·1010 ядер в секунду. Определить количество ядер 27Mg, которое накопится в препарате через промежуток времени

Задача 2.17 Радионуклид 124Sb образуется с постоянной скоростью q = 1,0·109 ядер в секунду. С периодом полураспада Т1/2 = 60 сут он превращается в стабильный нуклид 124Те. Найти:

а) через сколько времени после начала образования активность 124Sb станет А = 3,7·108 Бк.

б) какая масса нуклида 124Те накопится в препарате за четыре месяца после начала его образования.

Задача 2.18 Радионуклид 138Xe, который образуется с постоянной скоростью q = 1,0·109 ядер в секунду, испытывает превращение по схеме

Задача 2.19 Покоящиеся ядро 213Ро испустило α-частицу с кинетической энергией Тα = 8,34 МэВ. При этом дочернее ядро оказалось непосредственно в основном состоянии. Найти полную энергию Еα, освобождаемую в этом процессе. Какую долю этой энергии составляет кинетическая энергия дочернего ядра? Какова скорость отдачи дочернего ядра.

Задача 2.20 Распад 226Th ядер происходит из основного состояния и сопровождается испусканием α-частиц с кинетическими энергиями 6,33; 6,23; 6,10 и 6,03 МэВ. Рассчитать и построить схему уровней дочернего ядра.