Приёмы нахождения определённых интегралов

Интегрирование некоторых тригонометрических функций

  Интегралы вида R (sin x, cos x) dx, где в общем случае R – рациональная функция, приводятся к интегралам отрицательных функций с помощью универсальной подстановки .

.

.

x = 2arctg t .

Интеграл с переменным верхним пределом

 

Рассмотрим функцию $ f(x)$ , заданную на отрезке $ [a;b]$ , и предположим, что она интегрируема на отрезке $ [a;b]$ . Тогда при любом $ x\in(a;b]$ эта функция будет интегрируема на отрезке $ [a;x]$ и, следовательно, функция

 

$\displaystyle \Phi(x)=\int_a^xf(t)\;dt$

определена при всех $ x\in(a;x]$ . При $ x=a$ мы по определению положим её равной 0, то есть будем считать, что $ \int_a^af(t)\;dt=0$ для любой функции $ f$ и точки $ c$ из её области определения. Итак, функция $ \Phi(x)$ равняется значению определённого интеграла с переменным верхним пределом, вычисленного от интегрируемой функции $ f(x)$ , не обязательно непрерывной.

 Пример: Вычислить sin28013¢15¢¢.

Для того, чтобы представить заданный угол в радианах, воспользуемся соотношениями:

10 = ; 280;

1¢;

;

рад

Если при разложении по формуле Тейлора ограничиться тремя первыми членами, получим:  sinx = .

Сравнивая полученный результат с точным значением синуса этого угла,

sin= 0,472869017612759812,

видим, что даже при ограничении всего тремя членами разложения, точность составила 0,000002, что более чем достаточно для большинства практических технических задач.

Функция f(x) = ln(1 + x).

 Получаем:  f(x) = ln(1 + x); f(0) = 0;

f¢(x) =

 

 

………………………………………

 

Итого:

  Полученная формула позволяет находить значения любых логарифмов (не только натуральных) с любой степенью точности. Ниже представлен пример вычисления натурального логарифма ln1,5. Сначала получено точное значение, затем – расчет по полученной выше формуле, ограничившись пятью членами разложения. Точность достигает 0,0003.

ln1,5 = 0,405465108108164381

  Разложение различных функций по формулам Тейлора и Маклорена приводится в специальных таблицах, однако, формула Тейлора настолько удобна, что для подавляющего большинства функций разложение может быть легко найдено непосредственно.

 Ниже будут рассмотрены различные применения формулы Тейлора не только к приближенным представлениям функций, но и к решению дифференциальных уравнений, а также к вычислению интегралов.

 Задание 5. Вычислить с помощью дифференциала приближённое значение выражения .

Решение:

Используем приближённое равенство: , верное при малых значениях . Откуда: .

Преобразуем сначала исходное выражение: . Положим , , . Производная равна: , . Окончательно имеем: .

 Задание 6. Найти вторую производную функции .

 Решение:

Сначала находим первую производную: .

Вычисляем вторую производную:

.