Геометрический смысл интеграла

Несобственный интеграл от разрывной функции ,

называется сходящимся, если существуют оба конечных предела в правой части соотношения (2), и – расходящимся, если не существует или равен бесконечности хотя бы один из них. Если разрыв подынтегральной функции находится только в одной из граничных точек промежутка интегрирования (a или b), то есть имеет место лишь один предел в правой части соотношения (2), то говорят о несобственном интеграле второго рода с одной особой точкой.

Площадь области, лежащей между двумя графиками

Пусть $ f(x)$ и $ g(x)$  -- две непрерывные функции, заданные на отрезке $ [a;b]$ , причём $ f(x)\leqslant g(x)$ при всех $ x\in[a;b]$ . Между графиками $ y=f(x)$ и $ y=g(x)$ лежит область $ \mathcal{D}$ , с боков ограниченная отрезками прямых $ x=a$ и $ x=b$ .

Рис.6.1.



Если обе функции неотрицательны, то есть $ f(x)\geqslant 0$ , то для вычисления площади $ S_{\mathcal{D}}$ области $ \mathcal{D}$ достаточно заметить, что она равна разности площадей областей $ \mathcal{D}_g$ и $ \mathcal{D}_f$ , лежащих между отрезком $ [a;b]$ (снизу) и, соответственно, графиком $ y=g(x)$ и $ y=f(x)$ (сверху). Для нахождения площади $ S_g$ области $ \mathcal{D}_g$ и $ S_f$ области $ \mathcal{D}_f$ применим формулу (6.1) и получим:

$\displaystyle S_{\mathcal{D}}=S_g-S_f=\int_a^bg(x)\;dx-\int_a^bf(x)\;dx=\int_a^b(g(x)-f(x))\;dx.$(6.2)

Если же неравенство $ f(x)\geqslant 0$ не выполнено, то заметим следующее: функция $ f(x)$ ограничена, в том числе снизу, на $ [a;b]$ :

 

$\displaystyle f(x)\geqslant M$

при некотором $ M$ (по предположению, $ M<0$ ). Сдвинем оба графика, $ y=f(x)$ и $ y=g(x)$ , на $ \vert M\vert=-M$ единиц вверх, то есть рассмотрим функции $ f_1(x)=f(x)-M$ и $ g_1(x)=g(x)-M$ . Тогда, с одной стороны, область между графиками тоже целиком сдвигается на $ \vert M\vert$ вверх, и её площадь не изменяется; с другой стороны, оба сдвинутых вверх графика окажутся целиком не ниже оси $ Ox$ , и площадь между ними можно будет сосчитать по формуле (6.2). Заметим теперь, что

 

$\displaystyle g_1(x)-f_1(x)=g(x)-f(x).$

В итоге получаем:

 

$\displaystyle S_{\mathcal{D}}=S_{g_1}-S_{f_1}=
\int_a^b(g_1(x)-f_1(x))\;dx=
\int_a^b(g(x)-f(x))\;dx.$

Итак, формула (6.2) остаётся верной вне зависимости от того, как графики функций $ f(x)$ и $ g(x)$ расположены относительно оси $ Ox$ .

     

4.3. .

Решение. Используем признак Даламбера. Найдём . Здесь . Получим: . Согласно признаку Даламбера, данный ряд расходится.

4.4. .

Решение. Применим радикальный признак Коши. Найдём . Получим:

. Согласно признаку Коши, данный ряд сходится.

4.5. .

Решение. Проверим сначала для данного ряда выполнения необходимого условия сходимости: . Числитель данной дроби стремится к бесконечности, а знаменатель – ограниченная величина, принимающая, в зависимости от  значения различных знаков. Предел общего члена ряда, таким образом, не определён (и, естественно, не равен нулю), следовательно, данный ряд является расходящимся.

Примеры решения задач по нахождению интеграла