Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную

Конденсатор

Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью. Если к нему приложить синусоидальное напряжение (см. рис. 4), то ток i  через него будет равен 

.(3)

Полученный результат показывает, что напряжение на конденсаторе отстает по фазе от тока на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u  и i, то на его экране будет иметь место картинка, соответствующая рис. 5.

Из (3) вытекает:

;

 

 

 

Введенный параметр называют реактивным емкостным сопротивлением конденсатора. Как и резистивное сопротивление, имеет размерность Ом. Однако в отличие от Rданный параметр является функцией частоты, что иллюстрирует рис. 6. Из рис. 6 вытекает, что при конденсатор представляет разрыв для тока, а при . Формирование уравнений сложных r,L,C - цепей . и расчёт установившегося гармонического (синусоидального) режима В задание включены задачи для расчёта электрических цепей сложной конфигурации с синусоидальными источниками электрической энергии.

Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

;

,

- разделим первый из них на второй:

или

(4)

 

 

В последнем соотношении - комплексное сопротивление конденсатора. Умножение на соответствует повороту вектора на угол по часовой стрелке. Следовательно, уравнению (4) соответствует векторная диаграмма, представленная на рис. 7.

 

Понятие о генераторах переменного тока. Получение синусоидальной ЭДС. Общая характеристика цепей переменного тока. Амплитуда, период, частота, фаза, начальная фаза синусоидального тока. Мгновенное, амплитудное, действующее и среднее значения ЭДС, напряжения, тока.