Учебник по курсу Электротехника

Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную Однозначно для вас выкладываются самые элитные и современные шалавы. Юные проститутки окажутся лучшим решением. Милочки производят услуги, о которых вы и не мечтали, качество, наименьшие цены и чистота вы обретете точно.
Электротехника
Расчёт электрического поля
Расчёт магнитной цепи
Законы Кирхгофа
Расчёт электрических цепей
Расчёт трёхфазных цепей
Промышленная электроника
Трехфазные электрические цепи
Примеры выполнения курсовой работы по электротехнике
Методика расчёта линейных электрических цепей
Электротехника лекции
Элементы электрических цепей
Топология электрических цепей.
Переменный ток
Векторные диаграммы
Методы контурных токов и узловых потенциалов.
Основы матричных методов расчета электрических цепей
Мощность в электрических цепях
Резонансные явления
Векторные и топографические диаграммы
Анализ цепей с индуктивно связанными элементами.
Особенности составления матричных уравнений
Метод эквивалентного генератора
 

 

 

Особенности составления матричных уравнений

  Матрицы сопротивлений и проводимостей для цепей со взаимной индукцией

Как было показано ранее (см. лекцию N 6 ), для схем, не содержащих индуктивно связанные элементы, матрицы сопротивлений и проводимостей ветвей являются диагональными, т.е. все их элементы, за исключением стоящих на главной диагонали, равны нулю.

В общем случае разветвленной цепи со взаимной индукцией матрица сопротивлений ветвей имеет вид 

.

 

Здесь элементы главной диагонали , ,… - комплексные сопротивления ветвей схемы; элементы вне главной диагонали - комплексные сопротивления индуктивной связи i- й и k – й ветвей (знак “+” ставится при одинаковой ориентации ветвей относительно одноименных зажимов, в противном случае ставится знак “-”). Расчёт электрического поля, усилий, энергии и электрических параметров простейших конструкций Целью задания является закрепление теоретического материала, излагаемого в первой части курса – физические основы электротехники (ФОЭ). Теоретическая часть расчётов базируется на уравнениях поля в интегральной форме. Особенности конструкций элементов (сферическая и цилиндрическая симметрия) существенно упрощают расчётную часть и позволяют при выполнении задания сосредоточить внимание на физической стороне процессов.

Матрица проводимостей ветвей в цепях со взаимной индукцией определяется согласно

Y = Z –1 .

Зная матрицы и Y , можно составить контурные уравнения, а также узловые, т.е. в матричной форме метод узловых потенциалов распространяется на анализ цепей с индуктивно связанными элементами.

Следует отметить, что обычно не все ветви схемы индуктивно связаны между собой. В этом случае с помощью соответствующей нумерации ветвей графа матрице Z целесообразно придать квазидиагональную форму

,

 

что облегчает ее обращение, поскольку

,

 

где подматрицы   могут быть квадратными диагональными или недиагональными.

В качестве примера составим матрицы Z и Y для схемы на рис. 1,а, граф которой приведен на рис. 1,б.


Для принятой нумерации ветвей матрица сопротивлений ветвей


.

 

В этой матрице можно выделить три подматрицы, обращая которые, получим

 

Z-111;
Z-122 ;
Z-133 .

Таким образом, матрица проводимостей ветвей

Y .

 

Отметим, что при принятой ориентации ветвей и .

Пример матричного расчета цепей с индуктивными связями

Составление матричных соотношений при наличии ветвей с идеальными источниками Основные понятия измерения. Погрешности измерений. Измерение мощности. Электродинамический измерительный механизм. Измерение мощности в цепях постоянного и переменного токов. Индукционный измерительный механизм. Измерение электрической энергии.