Основные понятия и аксиомы статики

Момент сил относительно точки и оси

Элементы кинематики

В кинематике изучается механическое движение материальных точек и твердых тел без учета причин, вызывающих эти движения. Кинематику часто называют геометрией движения.

Механическое движение происходит в пространстве и во времени. Пространство, в котором происходит движение тел, рассматривается как трехмерное, все свойства его подчиняются системе аксиом и теорем эвклидовой геометрии. Время полагают ни с чем не связанным и протекающим равномерно.

Современное развитие физики привело к иным представлениям о пространстве и времени. Теория относительности, созданная величайшим ученым современности Эйнштейном, показала, что при скоростях, близких к скорости света (300 000 км/с), пространство и время зависят от скорости движения. При обычных скоро­стях указанная зависимость практически не обнаруживается и представления о пространстве и времени, установленные в классической механике, сохраняют силу.

В общем случае различные точки твердого тела совершают разные движения. Поэтому и возникает необходимость изучить в первую очередь движение отдельных точек тела. Чтобы определить положение точки в пространстве, нужно иметь какое-то неподвижное тело или связанную с ним систему координатных осей, которую называют системой отсчета. Движение заданного тела или точки обнаруживается только путем сравнения с системой отсчета.

В природе не существует неподвижных тел и, следовательно, не может быть абсолютно неподвижных систем отсчета. Обычно условно неподвижной системой отсчета считают систему координатных осей, связанную с Землей. Рассмотрим для примера движение точки в какой-то условно неподвижной системе координат хуг (рис. 115). Положение точки М в пространстве определяется тремя координатами. Эти координаты изменяются при переходе точки в другое положение. Кривая, которую описывает точка при движении в пространстве относительно выбранной системы отсчета, называется ее траекторией. Метод проекций Начертательная геометрия

Траектории делятся на прямолинейные (например, движение точек поршня двигателя) и криволинейные (круговые — движение точек шкива, круглой пилы; параболические — движение жидко­сти при истечении из отверстия в боковой стенке сосуда и др.).

Движение точки в пространстве прежде всего определяется скоростью, которая характеризует быстроту и направление движения точки в данный момент времени.

В зависимости от скорости движение точки может быть равномерным и неравномерным. При равномерном движении скорость постоянна по величине, при неравномерном — переменна. Изменение скорости во времени характеризуется ускорением. Скорость и ускорение точки являются векторными величинами.

При изучении движения точки необходимо различать два важных понятия: пройденный путь (или перемещение) и расстояние. Расстояние определяет положение точки на ее траектории и отсчитывается от некоторого начала отсчета. Расстояние является алгебраической величиной, так как в зависимости от положения точки относительно начала отсчета и от принятого направления оси расстояний оно может быть и положительным, и отрицательным. В отличие от расстояния путь, пройденный точкой, всегда определяется положительным числом. Путь совпадает с абсолютным значением расстояния только в том случае, когда движение точки начинается от начала отсчета и совершается по траектории в одном направлении.

В общем случае движения точки путь равен сумме абсолютных значений пройденных точкой расстояний за данный промежуток времени.

Ускорения при координатном способе задания движения.

Подставляя (2.6) в (2.11) и дифференцируя произведения в скобках, находим:

 .

Учитывая, что производные от единичных векторов  равны нулю, получаем:

 . (2.12)

Вектор   может быть выражен через свои проекции:

 . (2.13)

Сравнение (2.12) и (2.13) показывает, что вторые производные от координат по времени имеют вполне определенный геометрический смысл: они равны проекциям полного ускорения на координатные оси, т.e.

  , , .

 Зная проекции, легко вычислить модуль полного ускорения и направляющие косинусы, определяющие его направление:

 , . (2.14)

Изучение теоретической механики весьма способствует формированию системы фундаментальных знаний, позволяющей будущему специалисту научно анализировать проблемы его профессиональной области, использовать на практике приобретённые им базовые знания, самостоятельно - используя современные образовательные и информационные технологии - овладевать той новой информацией, с которой ему придётся столкнуться в производственной и научной деятельности.
Механические испытания материалов