Основные понятия и аксиомы статики

Основные понятия и аксиомы статики

Проекция силы на ось

Решение задач на равновесие сходящихся сил с помощью построения замкнутых силовых многоугольников в большинстве случаев сопряжено с громоздкими построениями. Более общим и универсальным методом решения таких задач является переход к определению проекций заданных сил на координатные оси и оперирование с этими проекциями. Осью называют прямую линию, которой приписано определенное направление. Проекция вектора на ось является скалярной величиной, которая определяется отрезком оси, отсекаемым перпендикулярами, опущенными на нее из начала и конца вектора.

Проекция вектора считается положительной (+), если направление от начала проекции к ее концу совпадает с положительным направлением оси. Проекция вектора считается отрицательной (—), если направление от начала проекции к ее концу противоположно положительному направлению оси. Машиностроительное черчение

Рассмотрим ряд случаев проецирования сил на ось:

1. Вектор силы  (рис. 12, а) составляет с положительным направлением оси х острый угол . Чтобы найти проекцию, из начала конца вектора силы опускаем перпендикуляры на ось х; получаем

.  (4)

Проекция вектора в данном случае положительна.

2. Сила  (рис. 12, б) составляет с положительным направлением оси x тупой угол . Тогда , но так как

Проекция вектора в данном случае отрицательна.

3. Сила  (рис. 12, в) перпендикулярна оси х. Проекция силы F на ось х равна нулю

Итак, проекция силы на ось координат равна произведению модуля силы на косинус угла между вектором силы и положительным направлением оси.

Силу, расположенную на плоскости хОу (рис. 13), можно спроектировать на две координатные оси Ох и Оу. На рисунке изображена сила  и ее проекции Fx и Fy, Ввиду того что проекции образуют между собой прямой угол, из прямоугольного треугольника АСВ следует:

Этими формулами можно пользоваться для определения модуля и направления силы, когда известны ее проекции на координатные оси. 

 Кинематика

Кинематикой  называется раздел теоретической механики, в котором изучаются геометрические свойства механического движение тел, без учета их масс и действующих на них сил.

Под механическим движением понимается изменение с течением времени положение тела в пространстве по отношению к другим телам. Для того чтобы определить изменение положения тела по отношению к другому телу, с последним связывают какую-либо систему координатных осей, называемую системой отсчета. В зависимости от тела, с которым она связана, система отсчета может быть как подвижной, так и неподвижной. Тело движется по отношению к выбранной системой отсчета, если с течением времени изменяются координаты хотя бы одной из его точек;  в противном случае тело по отношению к данной системе отсчета будет находиться в состоянии покоя. Таким образом, покой и движение - понятия относительные, зависящие от выбора системы отсчета. Выполнение расчетно-графической работы «Проекционное черчение» Инженерная графика

Механическое движение происходит в пространстве и во времени. При этом пространство считается трехмерным евклидовым пространством. Все измерения в нем производятся на основании методов евклидовой геометрии. За единицу длины при измерении расстояния принят 1 метр. Время в механике считается универсальным, т.е. протекающем одинаково во всех системах отсчета. За единицу времени принимается 1 секунда.

"Теоретическая механика" - фундаментальная естественнонаучная дисциплина, лежащая в основе современной техники. На материале теоретической механики базируются такие общетехнические дисциплины, как "Прикладная механика", "Сопротивление материалов", "Теория механизмов и машин", "Детали машин", "Строительная механика", "Гидравлика", "Теория упругости и пластичности", "Гидродинамика и аэродинамика", "Теория колебаний", "Теория управления движением", "Мехатроника", "Робототехника".
Механические испытания материалов