Примеры выполнения курсовой работы по электротехнике

Машиностроительное черчение
Черчение в строительной практике
Оформление чертежа
Эффективность виброзащиты
Построить проекции поверхности
вращения общего вида
Построить проекции прямого геликоида
Построить чертеж кондуктора
Построить чертеж крышки
Построить чертеж траверсы
Построить чертеж подвески
Общие сведения по резьбам
Выполнение сборочного чертежа
Сведения о материале деталей
Нанесение размеров на
сборочном чертеже
Плоская система сходящихся сил
Сопромат, термех
Пространственная система сил
Основные понятия и аксиомы статики
Основные понятия и аксиомы динамики
Элементы кинематики
Основные понятия сопративления материалов
Механические испытания материалов
Расчет бруса круглого поперечного
Плоскопаралельное движение твердого тела
Сопротивление усталости
Инженерная графика
Машиностроение
Графические обозначения материалов
в сечениях
Винтовые поверхности и изделия с резьбой
Винтовая линия
Винтовая лента
Построение проекции винтовой поверхности
Условные изобращения резьбы на чертежах
Многозаходные винты и резьбы
Виды резьб и их обозначения
Метрическая резьба
Трубная цилиндрическая резьба
Трубная коническая резьба
Упорная резьба
Сбег резьбы, фаски, проточки
Болты
Гайки
Винт
Шурупы
Шпилька
Пружинные шайбы
Соединения деталей болтом
Соединение деталей винтами
Упрощенные и условные изображения
резьбовых соединений
Резьбовые соединения труб
Соединения деталей - разъемные
и неразъемные
Резьбовые соединения
Соединение с применением штифтов
Чертежи деталей
Графическая часть чертежа
Нанесение размеров на чертежах деталей
Конструкторские и технологические базы
3 способа несения размеров элементов
деталей
Линейные и узловые размеры
При эскизировании и составлении рабочих
чертежей деталей
Основные сведения о допусках и посадках
Шероховатость поверхностей
и обозначение покрытий
Единая система допусков и посадок
Допуски формы и расположение поверхностей
Текстовые надписи на чертежах
Обозначение материалов на чертежах деталей
Выполнение эскизов деталей
Нанесение изображений элементов детали
Выполнение рабочих чертежей деталей
Выбор главного вида и числа изображений
Чертежи детали, изготовленной литьем
Чертеж детали, изготовленный из пластмассы
Чертежи пружин
Нутромер
Штангенциркуль
Математика
Функции
Вычисление пределов
Непрерывность функций
Производные
Дифференциалы
Математический анализ
Анализ функций
Корни уравнений
Алгебра
Линии и плоскости
Поверхности
Операции с матрицами
Комплексные числа
Матрицы
Дифференцироание функций
Линейные уравнения
Электротехника
Adobe Acrobat
Adobe FrameMaker
Adobe After Effects
Типы локальных сетей
Adobe Illustrator

Ядерные реакторы

Первый ядерный уран-графитовый реактор
Основные технические характеристики РБМК
Водо-водяной реатор, ВВЭР
Реаторы третьего поколения ВВЭР-1500
Реакторы на быстрых нейтронах
Промышленные реакторы
Исследовательские ядерные реакторы
Реактор БОР-60
Многопетлевой кипящий энергетический
реактор МКЭР-800
Реактор БРЕСТ
Безопасный быстрый реактор РБЕЦ
Тепловой реактор с внутренней
безопасностью
Энергетическая установка ГТ-МГР
Корпусной реактор ПРБЭР-600
ВВЭР-640 (В-407)
АРГУС

Физика

Электрическое поле
Решение задач по физике примеры
Строение и общие свойства атомных ядер
Модели атомных ядер
Ядерные реакции
Ядерная физика
Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Деление и синтез ядер
Квантовая механика
Спин, момент импульса
Атом водорода Принцип Паули

Информатика

Принципы функционирования глобальных
и локальных сетей
Информационно-вычислительные сети
Электротехника
Расчёт электрического поля
Расчёт магнитной цепи
Законы Кирхгофа
Расчёт электрических цепей
Расчёт трёхфазных цепей
Промышленная электроника
Трехфазные электрические цепи
Примеры выполнения курсовой работы по электротехнике
Методика расчёта линейных электрических цепей
Электротехника лекции
Элементы электрических цепей
Топология электрических цепей.
Переменный ток
Векторные диаграммы
Методы контурных токов и узловых потенциалов.
Основы матричных методов расчета электрических цепей
Мощность в электрических цепях
Резонансные явления
Векторные и топографические диаграммы
Анализ цепей с индуктивно связанными элементами.
Особенности составления матричных уравнений
Метод эквивалентного генератора

Примеры выполнения курсовой работы

Расчет методом узловых потенциалов

Проверяем баланс токов в узлах цепи (первый закон Кирхгофа)

Расчет методом эквивалентного генератора

 Расчет электрической цепи с взаимоиндуктивными связями методом контурных токов

Расчет методом узловых потенциалов

Расчет методом контурных токов

Элементы электрических цепей

Источники электрической энергии. Одной из основных характеристик источников электрической энергии является ЭДС. Количественно ЭДС характеризуется работой А, которая совершается при перемещении заряда в 1 Кл в пределах источника

Приемники электрической энергии Приемники электрической энергии делятся на пассивные и активные. Пассивными называют приемники в которых не возникает ЭДС. Вольтамперные характеристики пассивных приемников проходят через начало координат. При отсутствия напряжения ток этих элементов равен нулю.

Синусоидальный ток. Формы его представления

Представление синусоидального тока (напряжения) радиус - вектором. При анализе состояния электрических цепей переменного тока возникает необходимость вычисления суммы или разности колебаний одинаковых частот, но с разными амплитудами и начальными фазами. Решать такую задачу с помощью рассмотренной формы представления (т.е. с помощью тригонометрических функций) достаточно трудно.

Комплексное представление синусоидальных токов и напряжений позволяет совместить простоту и наглядность векторного представления с точностью представления действительными функциями времени

Комплексное сопротивление и проводимости элементов электрических цепей

Энергетические характеристики электрических цепей синусоидального тока

Проведем сложение векторов

Выражение мощности в комплексной форме Широкое применение комплексного представления тока и напряжения в процессе анализа электрических цепей предполагает найти комплексное представление для активной, реактивной и полной мощности. На первый взгляд эта задача не должна вызывать затруднений. Достаточно в выражение для мощности подставить комплексные ток и напряжение.

Резонансные свойства электрических цепей синусоидального тока Еще раз подчеркнем замечательную особенность цепи в режиме резонанса. Токи протекающие в ветвях реактивных элементов могут принимать значения в десятки и сотни раз больше общего тока цепи.

Поэтому резонанс цепи называют резонансом токов. Очень важно и то, что они противофазны

Задача 7.8

На входе схемы (рис. 7.8а) действует напряжение  (рис. 7.8б). Определить напряжение .


Решение

Переходная функция по току

.

Решение для интервала :

,

.

Решение для интервала :

,

 В.

Решение для интервала :

 А,

 В.

Задача 7.9


В схеме (рис. 7.9а)  кОм,  мкФ. Определить  при воздействии на входе напряжения  (рис. 7.9б),  В.

Решение

Найдем переходную функцию цепи по напряжению, используя схему (рис. 7.9в):

,

,

,

,

, ,

,

, , ,

, .

Решение для интервала :

;

, ,

  ,

.

Решение для интервала :

;

, , ,

.

Решение для интервала :

,

, , ,

.

Решение для интервала :

,

, , ,

.

Подставив данные, имеем:

В при  с,

В при  с,

В при  с,

В при  с.


График изменения   приведен на рис. 7.10.

Задача 7.10

Определить ток, напряжение на катушке и конденсаторе в идеальном последовательном LC-контуре () (рис. 7.11) после замыкания ключа.

Решение

По второму закону Кирхгофа получаем

,

.

Подставляя выражения тока в уравнение для напряжения, получаем

.

Решение ищем в виде

где  

Характеристическое уравнение

имеет корни

,

где   – собственная, резонансная частота контура.

Начальные условия

, .

Определяем постоянные интегрирования:

,

,

,

, .

Определяем искомые ток и напряжения:

,

,

.

Как видно из полученных выражений для i, uС, uL, при замыкании ключа в контуре возникают незатухающие синусоидальные колебания с частотой

.

Соответствующие временные диаграммы приведены на рис. 7.12.


Задача 7.11

Определить токи через катушку и конденсатор, а также напряжение на катушке и конденсаторе в идеально параллельном LC-контуре () (рис. 7.13) после замыкания ключа.

Решение

По первому закону Кирхгофа

,

.

Решение ищем в виде

где  .

Характеристическое уравнение

  или

имеет корни

.

Начальные условия

, , .

Определяем постоянные интегрирования:

,

,

,

, .

Определяем искомые токи и напряжения:

,

,

.