Промышленная электроника

Полупроводниковые приборы Электроника – это наука, изучающая принципы построения, работы и применения различных электронных приборов. Именно применение электронных приборов позволяет построить устройства, обладающие полезными для практических целей функциями – усиление электрических сигналов, передачу и прием информации (звук, текст, изображение), измерение параметров, и т.д. Электронно-дырочный переход. Основные параметры При обратном включении Р-n перехода (минус к Р области, плюс к n области) запирающий слой расширяется

Биполярные транзисторы. Транзисторы - это электронные приборы, предназначенные для усиления и преобразования сигналов. Наиболее распространены транзисторы с двумя р-п переходами и тремя выводами. Их называют биполярными, так как в работе используются носители обоих знаков.

Полевые транзисторы Биполярные транзисторы нашли широкое применение в электронике, но они имеют существенные недостатки. Недостатки обусловлены двумя факторами. Во-первых, активный режим работы предполагает, что эмиттерный переход транзистора открыт и его сопротивление мало.

Тиристор – это полупроводниковый прибор, способный под действием сигнала переходить из закрытого состояния в открытое. Благодаря этому свойству тиристоры применяются в цепях коммутации высоких мощностей и импульсных схемах информационной электроники.

Электронные устройства Большинство электронных управляющих, измерительных, вычислительных и других устройств питаются напряжением постоянного тока. Сетевое напряжение переменное, с частотой 50 Гц одно или трехфазное. Поэтому практически каждый электронный прибор снабжен автономным преобразователем напряжения переменного тока в напряжение постоянного тока. Значительно лучшими параметрами обладает схема двухполупериодного выпрямителя, разработанная в 1901 г. академиком Миткевичем

Сглаживающие фильтры Анализ работы рассмотренных схем выпрямителей показал, что напряжение на их выходе не постоянное, а пульсирующее. Применять такое напряжение непосредственно для питания электронных устройств нельзя. Существенно снизить уровень пульсаций позволяют сглаживающие фильтры. В основу их построения положено применение реактивных элементов - индуктивностей и емкостей.

Стабилизаторы напряжения Сглаживающие фильтры позволяют существенно уменьшить уровень пульсаций, но не исключают их полностью. Исключить пульсации позволяют стабилизаторы напряжения. Различают параметрические и компенсационные стабилизаторы. В составе преобразователей малой мощности как правило применяются параметрические стабилизаторы.

Резистивные усилители низкой частоты Усилителями называются устройства, в которых сравнительно маломощный входной сигнал управляет передачей значительно большей мощности из источника питания Передаточная характеристика позволяет рассмотреть различные режимы работы усилительного каскада (классы усиления).

Дифференциальный усилитель Рассмотренный усилитель по схеме с общим эмиттером применяется достаточно широко, но имеет ряд недостатков - малое входное и большое выходное сопротивления, зависимость коэффициента усиления от параметров нагрузки. Эти недостатки частично или полностью исключены в дифференциальном усилителе.

Усилитель по схеме с общим коллектором

Операционный усилитель Современные разработчики электронной аппаратуры стремятся использовать готовые функциональные узлы в виде интегральных микросхем (ИМС). Схемные решения ИМС тщательно проработаны и обеспечивают высокое качество аппаратуры.

Импульсные устройства Кроме напряжения синусоидальной формы в практике электротехники и электроники применяются напряжения других форм. Наиболее широко применяется импульсное напряжение. Импульсным называется прерывистое во времени напряжение (сигнал) любой формы. Под формой сигнала понимается закон изменения во времени напряжения или тока.

Компаратор – это устройство сравнения двух напряжений. Такие возможности приобретают ОУ в нелинейном режиме работы. Для анализа процесса сравнения обратимся еще раз к передаточной характеристике ОУ

Генераторы импульсных сигналов Формирующие цепи При генерации импульсных сигналов различной формы необходимо формирование временных интервалов, задающих длительность импульсов и пауз, частоту повторения импульсов и т.п. Эта задача решается с помощью формирующих цепей содержащих реактивные элементы. Наиболее простыми и надежными являются RC-цепи. Как правило, они применяются в качестве разделительных, дифференцирующих или интегрирующих цепей.

  Мультивибратором называется генератор периодически повторяющихся прямоугольных импульсов. Мультивибратор может быть выполнен на транзисторах, ОУ или на логических элементах. Рассмотрим схему мультивибратора на ОУ

  Генераторы линейно изменяющегося напряжения (ГЛИН) формируют напряжение пилообразной формы, которое необходимо для создания разверток на экранах осциллографов, телевизоров и др. индикаторов, для преобразователей аналоговых величин в цифровые, преобразователей  амплитуда-время и для др. целей.

 Введение в цифровую электронику

Основные операции и элементы алгебры логики. Основой построения любого устройства, использующего цифровую информацию, являются элементы двух типов: логические и запоминающие. Логические элементы выполняют простейшие логические операции над цифровыми сигналами. Запоминающие элементы служат для хранения цифровой информации (состояния разрядов кодовой комбинации). Булевы функции (функции логики).

Минимизация булевых функций Булевы функции в СДНФ и в СКНФ обычно избыточны. Поэтому этапу построения схемы должно предшествовать упрощение формул или минимизация. Цель минимизации – получить минимально необходимое количество логических элементов в схеме. В основу минимизации положены правила и законы булевой алгебры

Комбинационные устройства Комбинационными называются логические устройства, выходные функции которых определяются входными логическими функциями в момент их воздействия. К комбинационным устройствам относятся шифраторы, дешифраторы, преобразователи кодов, мультиплексоры и демультиплексоры, сумматоры и компараторы.

Задача 6.8

На вход цепи (рис. 6.8) подано напряжение .

Параметры цепи:  Ом, R=100 Ом.

Определить действующие значения токов , , , .

Решение

Постоянные составляющие токов:

 А,

.

Для первых гармоник эквивалентное комплексное сопротивление второй и третьей ветвей  (резонанс токов), а комплексное сопротивление четвертой ветви  (резонанс напряжений).

Поэтому амплитуды токов в первой и четвертой ветвях:

 А.

Амплитуда первой гармоники напряжения на зажимах

 В.

Амплитуды токов во второй и третьей ветвях:

 А,

 А.

Действующие значения токов в ветвях:

 А,

 А,

 А,

 А.

Задача 6.9

На входе двухполюсника (рис. 6.9) действуют напряжение  B и ток  А.

Определить активную, реактивную и полную мощности.


Решение

Активная мощность

 Вт.

Реактивная мощность

  Вар.

Полная мощность

 ВА.

Задача 6.10


На зажимах вторичных обмоток трансформатора (рис. 6.10а) действует симметричная система ЭДС.

Временная диаграмма ЭДС в одной из фаз показана на рис. 6.10б.

Определить показания вольтметра.

Решение

Разложение кривой  в ряд Фурье:

.

Мгновенное значение напряжения на зажимах вольтметра

.  (6.10)

В выражении (6.10) сумма ЭДС всех гармоник, не кратных 3, обращается в нуль, а третья, девятая и т.д. гармоники суммируются, и напряжение на зажимах вольтметра равно утроенной сумме гармоник, кратных трем:

.

Действующее значение напряжения (ограничиваясь 15-й гармоникой)

 В.

Задача 6.6

На вход цепи (рис. 6.6) подаётся напряжение

 В.

Параметры цепи для третьей гармоники:  Ом, R=60 Ом.

Определить действующее значение тока I.

Решение

Действующее значение тока первой гармоники

 А.

Действующее значение тока третьей гармоники

 А.

Действующее значение тока

 А.

Задача 6.7

В схеме (рис. 6.7)

, Ом.

Определить показания приборов:

а) электромагнитной системы;

б) магнитоэлектрической системы.

Решение

  А,

А,

А,

А,

В.

Показания приборов магнитоэлектрической системы:

 B,  A.

Показания приборов электромагнитной системы:

 B,   A.