Переменный ток Интерференция света Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную Наблюдение интерференции с помощью бипризмы. Дифракция света Поляризация света Задача Двойное лучепреломление.

Решение задач по физике примеры

Волны

 Волны – это распространяющиеся в пространстве изменения состояния среды, сопровождающиеся переносом энергии. В частности, механические (упругие) волны в каком-либо веществе представляют собой распространяющиеся в этом веществе механические напряжения, электромагнитные – распространяющееся электромагнитное поле. Упругие волны могут возникать в твердых, жидких и газообразных средах; электромагнитные – могут распространяться также и в вакууме.

 Распространяющиеся в непоглощающей и недиспергирующей) среде волны описываются классическим дифференциальным волновым уравнением:

 , (7.1)

где   – оператор Лапласа, V – фазовая скорость волны (в дальнейшем для краткости мы будем называть ее просто скоростью).

 В случае упругих волн x – смещение частицы среды от положения равновесия, для электромагнитных волн вместо x в уравнении (7.1) фигурирует напряженность электрического поля Е или индукция магнитного поля B. Элементарные процессы взаимодействия и законы сохранения Одним из важнейших, принципиальных вопросов электродинамики является вопрос о механизме взаимодействия электромагнитного излучения с веществом. Ответ на него – важнейшая задача физики.

 Скорость упругой волны в твердом теле определяется величиной модуля упругости G и плотности вещества r: V =; скорость электромагнитной волны зависит от диэлектрической проницаемости e и магнитной восприимчивости m среды, в которой распространяется волна: V =  = с/n; здесь с =  – скорость электромагнитной волны в вакууме, n =  – показатель преломления среды.

В одномерном случае (волна распространяется по оси X) уравнение (7.1) упрощается:

 . (7.1,а)

 Упругие волны могут быть продольными и поперечными (смещения частиц происходят вдоль направления распространения волны и перпендикулярно ему, соответственно). В жидкостях и газах распространяются только продольные волны, в твердых телах – как продольные, так и поперечные. Электромагнитные волны – всегда поперечные (векторы Е и В перпендикулярны скорости волны V, причем Е^В). Направление скорости электромагнитной волны V совпадает с направлением векторного произведения [ЕВ].

 Уравнением волны называется соотношение, в явной форме отражающее зависимость x(x, y, z, t) – а это решение дифференциаль-ного уравнения (7.1). В частности, уравнение плоской гармонической волны, распространяющейся по оси X, имеет вид:

 x(x,t) = A×cos(wt – kx + j0). (7.2)

Здесь А – амплитуда гармонической волны, w – циклическая частота, k = w/V = 2p/l – т.н. «волновое число». Напомним, что величина (wt – kx + j0) называется фазой, j0 – начальной фазой.

В цепи переменного тока используется плоский конденсатор, изолятор которого промок и он стал нагреваться. При частоте f = 50 Гц коэффициент мощности оказался равен 0,6. Определить по этим данным удельное сопротивление изолятора, если его диэлектрическая проницаемость равна e = 4,8.

* К бытовой электросети (напряжение U = 220 В, f = 50 Гц) присоединен дроссель, соединенный последовательно с сопротивлением R = 40 Oм. Напряжение, измеренное вольтметром на дросселе равно U1 = 160 В, а на сопротивлении U2 = 80 В. Какие мощности потребляются дросселем (Р1) и сопротивлением (Р2)

Переменное напряжение, действующее значение которого U = 10 В, а частота f = 50 Гц, подано на катушку без сердечника с индуктивностью L = 2 мГн и сопротивлением R = 100 мОм. Найти количество теплоты, выделяющееся в катушке за секунду.

К сети переменного тока с действующим напряжением U = 120 В подключили катушку, индуктивное сопротивление которой ХL = 80 Ом и полное сопротивление Z = 100 Ом. Найти разность фаз между током и напряжением, а также мощность, потребляемую катушкой.

При какой частоте напряжения, подаваемого на цепочку последовательно соединенных элементов R = 50 Ом, L = 1 мГн, С = 1 мкФ, ток отстает от напряжения по фазе на p/4?

В электрической схеме между точками, находящимися под напряжением U = U0×cosωt , включен конденсатор ёмкости С. Пространство между обкладками конденсатора заполнено слабо проводящей средой с сопротивлением R. Как зависит от времени сила тока, протекающего через данный участок цепи?

К участку цепи, состоящему из последовательно соединенных элементов R, L и C, приложено переменное напряжение с действующим значением U = 220 В и частотой v = 50 Гц. Сопротивление цепи R = 110 Ом, ёмкость  конденсатора равна 50 мкФ. Индуктивность L подбирается так, чтобы показание вольтметра, включенного параллельно конденсатору, стало максимальным. Чему равна эта индуктивность? Найти показания вольтметра и амперметра в этих условиях.

Параметры последовательного колебательного контура (R, L, C) таковы: С = 5 нФ, R = 0,1 Ом. Какую мощность Р надо подводить к контуру, чтобы поддерживать в нем незатухающие колебания на частоте w = 200 рад/c с амплитудой напряжения на конденсаторе UC0 = 10 В?

Найти условие «баланса токов» для цепочки, состоящей из параллельно соединенных идеальных емкости и индуктивности – минимума силы тока в подводящих проводах.

 

Совокупность точек, колеблющихся в одной и той же фазе, составляет волновую поверхность. Волновых поверхностей бесконечно много, «самая передняя» из них называется фронтом волны. Волна, описывающаяся соотношением (7.2), потому и называется плоской, что все ее волновые поверхности – плоскости.

  Если размерами источника волн можно пренебречь (точечный источник), то волновые поверхности являются сферическими и уравнение волны принимает вид (см. задачу 7.1): 

x(r,t) = ×cos(wt – kr). (7.3)

Здесь r – радиус вектор, соединяющий источник с данной точкой пространства; k = (2p/l)(V/V) – т.н. «волновой вектор».

Основные энергетические характеристики переноса энергии волнами (как упругими, так и электромагнитными) таковы:

a) Плотность потока энергии (количество энергии, переносимое волной в единицу времени через единичную площадку, перпендикулярную направлению распространения волны):

S(t) = W0(t)×V.  (7.9)

б) Интенсивность волны (среднее по времени значение плотности потока энергии):

I = <S(t)> = <W0(t)>×V. (7.10)

При усреднении по времени плотности энергии волны учтем, что среднее по времени значение квадрата гармонической функции равно 1/2, поэтому, например, для электромагнитной волны – см. (7.8):

Задача

Доказать, что амплитуда сферической волны обратно пропорциональна расстоянию до источника волн r (см. соотношение (7.3)).

Решение.

Чем дальше от источника уходит сферическая волна, тем на большую площадь распределяется испускаемая источником энергия (S = 4pr2). Соответственно, тем меньшая энергия (~ 1/r2) приходится на каждую колеблющуюся частицу. Из формул (7.4) и (7.8) следует, что плотность энергии волны W0(t) пропорциональна квадрату амплитуды колебаний (А2 для упругой, Е2 или В2 для электромагнитной волн). Следовательно, амплитуда колебаний в сферической волне обратно пропорциональна расстоянию от источника до данной точки А ~  ~ 1/r (см. ф-лу (7.3)).

Определить показатель преломления дезинфицирующего раствора n1, в который погружен медицинский препарат, помещенный на предметное стекло, если предельный угол при падении светового луча на границу стекло - дезраствор, составляет 61 . Показатель преломления стекла принять рав-ными n2 = 1,6.
Решение задач по физике примеры