Конденсаторы

Пусть мы имеем отдельный проводник, на который посажен заряд q, этот проводник создаёт поле такой конфигурации, как на рисунке 6.2. Потенциал этого проводника одинаков во всех токах, поэтому можно говорить просто потенциал проводника, а, вообще-то, слово потенциал требует указания точки, в которой этот потенциал определяется. Можно показать, что потенциал уединённого проводника – линейная функция заряда, который на него посажен, , увеличите заряд вдвое, потенциал увеличится вдвое. Это не очевидная вещь, и я не могу привести каких-нибудь аргументов на пальцах, чтобы пояснить вот эту зависимость. Получается так, что структура поля не меняется, ну, картина силовых линий не меняется, просто растут напряжённости поля во всех точках пропорционально этому заряду, но общая картина не меняется. Ещё раз повторяю – не очевидная вещь. Ну, ладно, потенциал уединённого проводника – линейная функция заряда, . Пишем тогда , вводя коэффициент пропорциональности вот таким способом, где этот коэффициент пропорциональности С определяется геометрией проводника и называется ёмкостью уединённого проводника1). Ёмкость проводника не является его свойством, то есть на каком-то куске железа нельзя написать «ёмкость такая-то», потому что наличие или отсутствие посторонних тел вблизи меняет эту ёмкость. Его ёмкость, коэффициент пропорциональности, ёмкость отдельного проводника не является свойством этого проводника, она ещё зависит, помимо его, от наличия или отсутствия других тел. Однако, имеются устройства, которые называются конденсаторы, специальные устройства, для которых понятие ёмкости имеет однозначный смысл.

Конденсатором, вообще говоря, называется система из двух проводников, из которых один полностью охватывает другой, то есть, в идеале, конденсатор – вот такая штука:

Если на внутреннем проводнике заряд +q, а на внешнем -q. Внутри возникает электрическое поле вот такой конфигурации (силовые линии ортогональны поверхностям). И никакие внешние заряды не оказывают влияния на это поле, внешние поля не проникают внутрь проводящей полости, то есть от электростатического поля можно заэкранироваться. Хотите жить без электрического поля, вот, залезьте в железную бочку, закройтесь крышкой и всё, оно к вам туда не проникнет, скажем, транзистор у вас там в руках в этой бочке работать не будет, электромагнитные волны туда не будут проникать. Почему, кстати? А потому что внутри проводника поле равно нулю, поскольку напряжённость связана с распределением заряда на поверхности, а начинка проводника уже там не участвует, вы можете выкинуть эту начинку, получить полость, ничего от этого не изменится. Внутри проводника поле определяется только конфигурацией этих проводников и не зависит от внешних зарядов, тогда, если на внутреннем проводнике потенциал , а на внешнем , то мы снова будем иметь такую вещь, что внутренняя энергия пропорциональна заряду: , заряду q, который сидит на картинке внутри проводника. Тогда пишем: . Такое устройство называется конденсатором, и величина С называется ёмкостью конденсатора. Вот это уже свойство устройства, на нём можно написать: «ёмкость С». Конденсатор – это распространённые элементы в электричестве, в электротехнике и в радиотехнике, и на них прямо написано «ёмкость такая-то», и эта величина уже не зависит от того, что имеется вокруг. По размерности ёмкость что такое? , ёмкость в одну фараду – это ёмкость такого устройства, что, если на него посадить заряд в 1Кл (это колоссальный заряд), то разность потенциалов будет 1В. Нет таких конденсаторов на свете, на Земле просто невозможно построить такой конденсатор, чтобы он имел ёмкость в фараду, поэтому, подходя к этой ёмкости, мы будем использовать микрофарады.

 

Определим силу тяготения, действующую со стороны нашего слоя на материальную точку, помещенную внутри него в какойто точке а.

Для этой цели проведем через точку а и центр 0 прямую. Эта прямая пересечет внешнюю сферу в двух точках С и С'. Построим теперь на поверхности сферы вокруг точки С очень маленький четырехугольник 1, настолько маленький, что его можно рассматривать как плоский квадрат. Обозначим углы этого квадрата d1, d2, d3, d4. Пусть его площадь S, объем соответствующего элемента шарового слоя V. Проведем затем прямые линии через точку а и точки d1, d2, d3, d4. Эти прямые пересекут сферу вторично в точках d1, d2, d3, d4'. Соединив эти точки, мы получим второй четырехугольник 2, который также можно будет рассматривать как плоский квадрат. Пусть его площадь будет S, а соответствующий элемент объема шарового слоя будет V'. Легко видеть, что сила тяготения, действующая на массу m, помещенную в точке а, со стороны элементов шарового слоя V и V, будет равна нулю. Действительно, массы этих элементов будут относиться как площади квадратов S и S'. В свою очередь, площади квадратов S и S' будут прямо пропорциональны квадратам их сторон, следовательно, прямо пропорциональны квадратам расстояний этих элементов до точки а — Са и С'а. Таким образом, силы тяготения, действующие на массу со стороны элементов 1 и 2, будут прямо пропорциональны квадратам расстояний этих элементов до точки а.

Однако многолетние попытки и, в частности, усилия всей жизни создателя теории относительно Альберта Эйнштейна, приблизиться к решению этой проблемы оказались тщетными. А ведь это должно было случиться, поскольку Эйнштейн выводил преобразования Лоренца, положенные им затем в основу его теории гравитации, из уравнений Максвелла для электромагнитного поля. Эти уравнения настолько совершенны в описании электромагнитных явлений, что никому (в том числе и Эйнштейну) и в голову не могло придти, что они могут что-то не учитывать в этих явлениях.