Электрические сети энергосистем России Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную Производство электроэнергии на ТЭС Топливно-энергетические ресурсы РФ Устройство реактора Экологические проблемы энергетики Концепция развития атомной энергетики

Развитие атомной энергетики России

В связи с тем, что радиационное воздействие на население и окружающую среду обусловлено, главным образом, радионуклидами, попавшими в атмосферу, количество которых зависит от процесса генерации их при резке загрязненного оборудования, то есть, в конечном счете, от способа резки, для проведения демонтажных работ были запланированы только методы с наименьшим выходом радиоактивных аэрозолей. Для демонтажа и фрагментации малогабаритных объектов планируется использовать гидроножницы и гидрокусачки. Крупногабаритные объекты планируется демонтировать с использованием механических пил, алмазной проволоки (каната), режущего инструмента с твердосплавными фрезами и др. Для снижения выхода радиоактивных аэрозолей в воздушную среду технологических помещений при выполнении демонтажных работ запланировано использование методов интенсивного пылеподавления, в результате которых демонтируемое оборудование покрывается защитной полимерной пленкой, фиксирующей поверхностные загрязнения.

ПГ

 

ПВУ

 

ПВО

 
image005-ПВО

 Рис. 19. Вид внутри технологических помещений петлевых установок ПГ, ПВУ, ПВО

-

 Рис. 20. Удаление петлевых каналов из бассейна хранилища

 Рис. 21. Обследование и выгрузка облученного топлива из приреакторного хранилища ОЯТ

Для снижения и поддержания на допустимом уровне концентрации аэрозолей в воздухе предусмотрено использование в зоне работ дополнительной системы локальной вентиляции.

Рис.22. Выгрузка и демонтаж канала с облученной сборкой петлевой установки с жидкометаллическим теплоносителем

Основная радиационная опасность для персонала заключается в наличии полей γ – излучения в зонах проведения работ. Для обеспечения безопасности персонала, занятого в работах по выводу из эксплуатации, предусмотрено использование дистанционно- управляемых машин (ДУМ).

Конкретные методы демонтажа определялись исходя из насыщенности оборудования и радиационной обстановки в помещении. Последовательность проведения демонтажных работ определялась с учетом принципа минимизации облучения персонала и устанавливалась следующей (см.рис.23):

работы по демонтажу оборудования и трубопроводов начинаются в помещениях с наименее загрязненным оборудованием;

при проведении демонтажных работ в конкретном технологическом помещении в первую очередь демонтируется наиболее загрязненное оборудование.

Рис.23. Последовательность проведения демонтажных работ в подвальных помещениях зд. 37/1

Для предотвращения неорганизованного поступления радионуклидов в окружающую среду, кроме технических мероприятий, предусмотрен определенный регламент работ, который включает следующие положения:

демонтажные работы в технологических помещениях проводятся при закрытом транспортном люке в перекрытии помещения;

для транспортировки демонтированного оборудования и его фрагментов к транспортным проемам используются электрокары или транспортные тележки, оснащенные радиационной защитой;

открытие крышки транспортного люка в перекрытии помещения для проведения погрузочно-разгрузочных работ производится не ранее, чем через час после прекращения демонтажных работ, чтобы объемная активность в воздушной среде снизилась за счет вытяжной вентиляции;

выгрузка перегрузочных контейнеров из технологических помещений через транспортные люки осуществляется с помощью автомобильного крана грузоподъемностью 60 т.

Описана технология обращения с образуемыми при демонтаже РАО и отражены, предусмотренные проектом организационно - технические мероприятия, направленные на обеспечение радиационно-экологической безопасности персонала, населения и окружающей среды при проведении работ по выводу из эксплуатации реакторных установок МР и РФТ.

Глава 7 посвящена разработке технического обеспечения вывода из эксплуатации реакторов МР и РФТ с обоснованием радиационной безопасности персонала, населения и окружающей среды.

В соответствии с принципами, на которых базируются работы по выводу из эксплуатации, выбор технологий и технического обеспечения демонтажных работ определяется как требованиями обеспечения безопасности персонала объекта, так и требованиями обеспечения минимального воздействия проводимых работ на население и окружающую среду.

В качестве дистанционно- управляемых механизмов запланировано использование, хорошо себя зарекомендовавшей при проведении работ по ликвидации хранилищ РАО, техники шведской фирмы BROKK. Эта робото - техника включает: BROKK-800, BROKK-400, BROKK-330, BROKK-180, BROKK-90 и BROKK -50 с навесным оборудованием в составе гидромолота, гидроножниц и гидрокусачек, твердосплавных фрез, захватов различного типа и др. Вместе с тем предусматривалось оснащение одного из BROKK манипулятором, который обеспечит выполнение демонтажных работ на глубине до 6 м.

Для работы в полях высокого g- излучения в стесненных условиях предусмотрена машина лёгкого класса – BROKK-50 с базой шасси не более 60 см, оснащенная захватом- манипулятором, комплектом штатного навесного оборудования и видеосистемой для дистанционного управления.

Указанные технологические средства будут использоваться для проведения работ по фрагментации, сортировке, загрузке РАО в контейнеры и их транспортировке.

Для улучшения радиационной обстановки будет применяться технология пылеподавления, которая основана на использовании изолирующих защитных покрытий на основе полимерных составов (АК-501, СКС-501 и др.). Эти защитные полимерные покрытия обладают способностью в течение длительного времени (до 18 месяцев) предотвращать распространение радиоактивного загрязнения в виде дисперсионных аэрозолей с твердой фазой в окружающее пространство.

При проведении работ по демонтажу оборудования в технологических помещениях реактора и петлевых установок, а также демонтаже внутрикорпусных устройств реактора РФТ для исключения выхода радиоактивных аэрозолей из зоны работ будут использоваться системы локальной вентиляции.

Проектом предусмотрено использование дистанционной диагностики для контроля радиационной обстановки, включающей приборы, разработанные в Центре, которые позволят проводить радиационное обследование и контроль за радиационной обстановкой при проведении демонтажных работ в самых сложных радиационных условиях.

Для дезактивации загрязненных поверхностей предусмотрено оборудование:

- комплекс механической дезактивации поверхностей vac-pac (vacuum packaging), который позволяет проводить дезактивацию поверхностей (крашеные поверхности, сталь, кирпич, бетон, цемент, дерево) с одновременным сбором загрязненного материала в металлических контейнерах (200-л бочках), полностью готовых к дальнейшему кондиционированию;

- установку «DRY ICE BLASTING» на основе технологии криогенного бластинга сухим льдом, для проведения работ по дезактивации загрязненных поверхностей демонтированного оборудования;

- установку для пенной дезактивации труднодоступных мест;

- скруббер, оснащённый промышленным пылесосом для сбора пыли, бетонной крошки и аэрозолей, размещаемый на базе BROKK, для удаления загрязнённого поверхностного слоя при очистке бетонных конструкций.

 Для дезактивации радиоактивно загрязненного грунта предусмотрено использование созданной в НИЦ «КИ» установки. Для снижения дозовых нагрузок в реакторном зале предусмотрена установка для очистки воды бассейна реактора и бассейна выдержки.

Для обоснования возможности использования предлагаемых технологий и средств демонтажа была выполнена оценка дозовых нагрузок на персонал, при проведении демонтажных работ на реакторе МР, при этом расчет производился с учетом длительности и последовательности проводимых операций в каждом конкретном помещении. Результаты расчета показали, что среднегодовая дозовая нагрузка на работников, занятых демонтажем оборудования в соответствии с разработанными технологиями и использованием дистанционно-управляемой техники, составит не более 3 мЗв.

При оценке радиационного воздействия на население при проведении работ по выводу из эксплуатации реакторов МР и РФТ учитывалось как воздействие, обусловленное выбросом в окружающую среду радиоактивных нуклидов, так и воздействие γ- излучения радиоактивных источников на площадке.

Мощность дозы внешнего γ- излучения на границе санитарно-защитной зоны Центра от транспортных контейнеров, загруженных РАО и размещенных на накопительной площадке, оказалась в ~50 раз ниже естественного фона.

При проведении демонтажных работ в технологических помещениях контуров охлаждения и петлевых установок реактора МР количество образуемых радиоактивных аэрозолей составит ~3×109 Бк, при этом выброс в атмосферу -~ 3×107 Бк.

 Были выполнены расчеты годовых доз внешнего и внутреннего облучения лиц из населения, результаты которых приведены на рис 24-26.

Рис.24. Изолинии дозовых нагрузок, обусловленных выпадениями радиоаэрозолей на подстилающую поверхность, мЗв/год

Рис. 25. Изолинии дозовых нагрузок, обусловленных внешним облучением от радиоактивного облака, мЗв/год

Рис. 26 Изолинии дозовых нагрузок, обусловленных ингаляционным путем поступления радионуклидов, мЗв/год

  Дозовые нагрузки на население за счет внешнего и внутреннего облучения на ближайшей границе территории НИЦ ”КИ” составляют не более 5×10-6 мЗв/год, что существенно ниже допустимого значения (1 мЗв/год). Коллективная доза за счет облучения от выпадений и ингаляционного пути поступления радионуклидов, получаемая населением, проживающем в радиусе 5 км от Центра, составит ~1.2×10-3 чел.-Зв. Основной вклад в дозу облучения критической группы населения вносит облучение от выпадений радионуклидов на поверхностный покров земли (доза внутреннего облучения за счет ингаляционного пути поступления и доза внешнего облучения от радиоактивного облака, в 80 и 2500 раз меньше, соответственно).

Рассмотрены радиационные последствия возможных аварийных ситуаций при проведении работ по выводу из эксплуатации реакторов МР и РФТ. Показано что при аварийной ситуации, связанной с возникновением пожара в технологическом помещении и воздействием огня на загрязненное разрезаемое оборудование, возможно поступление радиоактивных аэрозолей 137Cs, 60Co и 90Sr во внешнюю среду в количестве 3×104 Бк (без учета осаждения аэрозолей на пути следования).

Результаты расчетов радиационных последствий кратковременного выброса на уровне поверхности земли 137Cs, 60Co и 90Sr суммарной активностью 3×104 Бк показывают, что радиационные последствия для населения и окружающей среды значительно ниже дозовых нагрузок, регламентированных для населения.

В заключении диссертации подведены итоги многолетней работы по проблеме вывода из эксплуатации исследовательских реакторов, по научно обоснованному выбору технологий и технических средств вывода из эксплуатации исследовательских реакторов.

Проведенная работа позволила получить следующие основные результаты.

разработан проект вывода из эксплуатации исследовательских реакторов МР и РФТ, разработаны демонтажные технологии и предложены технические средства, позволяющие провести демонтажные работы в условиях мегаполиса. Проведено научное обоснование предложенного выбора на основе расчетных оценок радиационного воздействия на персонал, населения и окружающую среду при штатном режиме проведения работ и при возможных авариях.

разработан метод оценки количественных и радиационных характеристик РАО, образующихся в процессе проведения демонтажных работ. Проведены расчетные оценки количества РАО во временных хранилищах на площадке ВХРАО в НИЦ «КИ», которые были подтверждены результатами, полученными при ликвидации хранилищ.

разработан и создан стенд для изучения поведения радиоактивных аэрозолей при аварийных ситуациях, экспериментально определено значение коэффициента скорости осаждения аэрозолей на поверхностях стен помещения и оборудования;

разработан метод определения коэффициентов выхода радиоактивных аэрозолей при проведении демонтажных работ для обоснования безопасности проводимых работ; с помощью созданного метода были экспериментально определены значения коэффициентов выхода аэрозолей при резке загрязненного радионуклидами оборудования;

в рамках радиационного обследования реакторов МР (с девятью петлевыми установками) и РФТ проведено экспериментальное исследование радиационных характеристик технологического оборудования реакторов с использованием как традиционных методов, так и методов дистанционной диагностики, разработанных в НИЦ «КИ» и позволяющих проводить исследования в условиях высоких уровней излучения.

Расчет пространственного распределения плотности потока быстрых нейтронов на корпусах реакторов и образцах свидетелях был осуществлен в многогрупповом приближении методом дискретных ординат с помощью программ DOT3, ANISN и библиотеки групповых сечений BUGLE 96. Трехмерное распределение нейтронного поля было получено методом синтеза двух двумерных (R-θ и R-Z) и одномерного (R) расчетов

Нейтронные расчеты выполнялись двумя различными способами – в приближении «непрерывного» контейнера и с «дискретными» контейнерами.

В качестве количественной характеристики опережения облучения ОС по отношению к КР используется коэффициент опережения (КО) – величина, равная отношению усредненной расчетно-экспериментальной величины плотности потока (или флюенса) нейтронов с E>0,5 МэВ, воздействовавших на образцы-свидетели за все время их облучения, к соответствующему максимальному значению в интересующей зоне внутренней поверхности корпуса реактора за период облучения ОС

Дан обзор методов дезактивации, которые разделяют на три основные категории: химические, электрохимические и нехимические (или механические). Химические и электрохимические методы включают: «жесткие» методы (с использованием химических реагентов высокой концентрации), «мягкие» методы (с использованием химических реагентов низкой концентрации), электрохимическую дезактивацию, ультразвуковые методы для интенсификации процессов жидкостной дезактивации

Работы по проведению комплексного инженерного и радиационного обследования: технологических помещений, оборудования и трубопроводов контуров охлаждения реактора МР и петлевых установок, включая спектрометрические исследования состава радионуклидов; внутрикорпусных устройств реакторов МР и РФТ

Разработка метода оценки количественных и радиационных характеристик радиоактивных отходов, образующихся в процессе проведения демонтажных работ. Практика показывает, что определение величины загрязненности оборудования как наружных, а тем более внутренних поверхностей трубопроводов и оборудования без отбора проб (вырезания образцов) загрязненной поверхности оборудования практически невозможно.

Особенность процесса формирования активности радионуклидов в воздушной среде помещения, в котором проводятся работы по резке загрязненного оборудования, состоит в дискретном характере процесса резки оборудования.

Базовая энергетика, построенная на углеводородах, исторически себя исчерпала, и в течение ближайших десяти лет её рост будет закончен. Новых месторождений будет открываться всё меньше и меньше. При этом, в ближайшие 30-50 лет замена базовой углеводородной энергетики на любые виды альтернативной неядерной энергетики невозможна.
Электрические сети энергосистем России Атомная энергетика