Черчение в строительной практике

Анализ различий ВВЭР и РБМК http://impresi.ru/
Машиностроительное черчение
Черчение в строительной практике
Оформление чертежа
Эффективность виброзащиты
Построить проекции поверхности
вращения общего вида
Построить проекции прямого геликоида
Построить чертеж кондуктора
Построить чертеж крышки
Построить чертеж траверсы
Построить чертеж подвески
Общие сведения по резьбам
Выполнение сборочного чертежа
Сведения о материале деталей
Нанесение размеров на
сборочном чертеже
Плоская система сходящихся сил
Сопромат, термех
Пространственная система сил
Основные понятия и аксиомы статики
Основные понятия и аксиомы динамики
Элементы кинематики
Основные понятия сопративления материалов
Механические испытания материалов
Расчет бруса круглого поперечного
Плоскопаралельное движение твердого тела
Сопротивление усталости
Инженерная графика
Машиностроение
Графические обозначения материалов
в сечениях
Винтовые поверхности и изделия с резьбой
Винтовая линия
Винтовая лента
Построение проекции винтовой поверхности
Условные изобращения резьбы на чертежах
Многозаходные винты и резьбы
Виды резьб и их обозначения
Метрическая резьба
Трубная цилиндрическая резьба
Трубная коническая резьба
Упорная резьба
Сбег резьбы, фаски, проточки
Болты
Гайки
Винт
Шурупы
Шпилька
Пружинные шайбы
Соединения деталей болтом
Соединение деталей винтами
Упрощенные и условные изображения
резьбовых соединений
Резьбовые соединения труб
Соединения деталей - разъемные
и неразъемные
Резьбовые соединения
Соединение с применением штифтов
Чертежи деталей
Графическая часть чертежа
Нанесение размеров на чертежах деталей
Конструкторские и технологические базы
3 способа несения размеров элементов
деталей
Линейные и узловые размеры
При эскизировании и составлении рабочих
чертежей деталей
Основные сведения о допусках и посадках
Шероховатость поверхностей
и обозначение покрытий
Единая система допусков и посадок
Допуски формы и расположение поверхностей
Текстовые надписи на чертежах
Обозначение материалов на чертежах деталей
Выполнение эскизов деталей
Нанесение изображений элементов детали
Выполнение рабочих чертежей деталей
Выбор главного вида и числа изображений
Чертежи детали, изготовленной литьем
Чертеж детали, изготовленный из пластмассы
Чертежи пружин
Нутромер
Штангенциркуль
Математика
Функции
Вычисление пределов
Непрерывность функций
Производные
Дифференциалы
Математический анализ
Анализ функций
Корни уравнений
Алгебра
Линии и плоскости
Поверхности
Операции с матрицами
Комплексные числа
Матрицы
Дифференцироание функций
Линейные уравнения
Электротехника
Adobe Acrobat
Adobe FrameMaker
Adobe After Effects
Типы локальных сетей
Adobe Illustrator

Ядерные реакторы

Первый ядерный уран-графитовый реактор
Основные технические характеристики РБМК
Водо-водяной реатор, ВВЭР
Реаторы третьего поколения ВВЭР-1500
Реакторы на быстрых нейтронах
Промышленные реакторы
Исследовательские ядерные реакторы
Реактор БОР-60
Многопетлевой кипящий энергетический
реактор МКЭР-800
Реактор БРЕСТ
Безопасный быстрый реактор РБЕЦ
Тепловой реактор с внутренней
безопасностью
Энергетическая установка ГТ-МГР
Корпусной реактор ПРБЭР-600
ВВЭР-640 (В-407)
АРГУС

Физика

Электрическое поле
Решение задач по физике примеры
Строение и общие свойства атомных ядер
Модели атомных ядер
Ядерные реакции
Ядерная физика
Законы радиоактивного распада
Взаимодействие нейтронов с ядрами
Деление и синтез ядер
Квантовая механика
Спин, момент импульса
Атом водорода Принцип Паули

Информатика

Принципы функционирования глобальных
и локальных сетей
Информационно-вычислительные сети
Электротехника
Расчёт электрического поля
Расчёт магнитной цепи
Законы Кирхгофа
Расчёт электрических цепей
Расчёт трёхфазных цепей
Промышленная электроника
Трехфазные электрические цепи
Примеры выполнения курсовой работы по электротехнике
Методика расчёта линейных электрических цепей
Электротехника лекции
Элементы электрических цепей
Топология электрических цепей.
Переменный ток
Векторные диаграммы
Методы контурных токов и узловых потенциалов.
Основы матричных методов расчета электрических цепей
Мощность в электрических цепях
Резонансные явления
Векторные и топографические диаграммы
Анализ цепей с индуктивно связанными элементами.
Особенности составления матричных уравнений
Метод эквивалентного генератора

В инженерной практике существуют такие объекты, для которых метод проецирования на две и более взаимно перпендикулярные плоскости проекций непригоден: изображения получаются мало наглядными, а точность графических построений на таких чертежах недостаточна при решении позиционных и метрических задач.

Сущность метода и построения проекций точек

 Проградуировать прямую – значит найти на ней точки, имеющие целочисленные отметки. Например, задан отрезок АВ (А В). Чтобы проградуировать его, надо на проекции данного отрезка построить проекции точек 2,3,4. Для решения этой задачи применяется метод пропорционального деления отрезка.

Задание плоскости В проекциях с числовыми отметками, как и в других методах, плоскость может быть задана тремя точками, не лежащими на одной прямой; прямой и точкой, не лежащей на этой прямой; двумя параллельными или двумя пересекающимися прямыми; плоской фигурой. Однако чаще всего задается масштабом уклонов (масштабом падения) т.к. в проекциях с числовыми отметками такое задание является более наглядным и удобным для решения большинства инженерных задач.

Задание прямого кругового конуса В проекциях с числовыми отметками форма любых поверхностей достаточно полно характеризуется их горизонталями. Все способы представляют собой разновидности каркасного способа задания поверхностей. Для выполнения графической работы достаточно знать, как задается прямой круговой конус и топографическая поверхность.

Построение горизонталей на откосах дороги На откосах от площадки горизонтали параллельны краям площадки, т.к. они тоже являются горизонталями, а все горизонтали параллельны между собой.

Построение эпюр угловых перемещений при кручении. Имея формулы для определения деформаций и зная условия закрепления стержня, нетрудно определить угловые перемещения сечений стержня и построить эпюры этих перемещений. Если имеется вал (т.е. вращающийся стержень), у которого нет неподвижных сечений, то для построения эпюры угловых перемещений принимают какое-либо сечение за условно неподвижное.

Задание топографической поверхности Поверхности, образование которых не подчинено определенным законам, называются каркасными или градоическими поверхностями. Они используются в авиации, судостроении, автостроении и других отраслях техники. К ним относятся и земная поверхность, которую принято называть топографической поверхностью.

Построение линии пересечения топографической поверхности с плоскостью

Определение нуля работ на площадке и дороге Точки и линии где не срезают и не насыпают землю , называют точками и линиями нуля работ.

Примеры выполнения чертежей земельных работ на дорогах

Построение промежуточных горизонталей на плане местности. При выполнении чертежа с числовыми отметками часто возникает необходимость в построении промежуточных горизонталей (при построении пересечений откосов насыпи и выемки с местностью, при определении точки нуля работ и т.д.)

Построение сечения сооружения

 В каждом задании дается изображение плана местности при помощи горизонталей с их числовыми отметками, план площадки с отметкой, определяющей ее уровень, изображение дороги и линейный масштаб. Определяется нуль работ с обеих сторон дороги, если эти точки имеются. Там где выемка, вычертить канавку, параллельную дороге. Продлить горизонтали дороги до границы канавки

Оформление чертежа

Примеры выполнения греческих и латинских букв для обозначения геометрических фигур по ГОСТ 2.304-68

Методические рекомендации к решению задачи № 2 Условие задачи: Построить проекции поверхности, заданной проекциями геометрической части определителя.

Пример. S(m, l) – цилиндрическая поверхность общего вида. m – направляющая, l – образующая. Даны проекции геометрической части определителя (рис. 2.10). Построить проекции поверхности.

Пример. Построить проекции поверхности вращения общего вида

Пример. Построить проекции конуса вращения Ф(i,l), у которого ось вращения занимает положение горизонтали

Построить проекции прямого геликоида. Геометрическая часть определителя прямого геликоида F (i, m), где i – ось, m - направляющая винтовая линия (рис. 2.28). Алгоритмическая часть определителя

Построить проекции линии пересечения поверхности эллипсоида вращения S с призматической поверхностью L

Построить проекции точек пересечения отрезка прямой а c октаэдром

Построить проекции точек пересечения отрезка прямой а с поверхностью тора

Построить чертеж кондуктора

Построить чертеж корпуса

Построить чертеж прокладки.

Построить чертеж крышки

Построить чертеж профиля стали тавровой

Построить чертеж профиля стали специальной для вагонов

Пример. Построить чертеж профиля проката

Построить чертеж траверсы

Построить чертеж стойки

Построить чертеж подвески

Построить чертеж профиля тавробульбового бимса

Общие сведения по резьбам

Укажите условное обозначение метрической резьбы

Виды конструкторских документов ГОСТ 2107-68 устанавливает следующие виды изделий - детали, сборочные единицы, комплексы, комплекты. Сборочной единицей называется изделие, составные части которого подлежат соединению между собой на предприятии - изготовителе сборочными операциями (свинчиванием, сочленением, склеиванием, клепкой, сваркой, пайкой и т.п.)

Ознакомление со сборочной единицей

Выполнение сборочного чертежа изделия с натуры

Нанесение размеров При нанесении размеров на чертежах деталей следует выполнять основное требование количество размеров на чертежах должно быть минимальным, но достаточным для полного определения геометрических форм элементов, их величин, взаимного расположения и других размеров, необходимых для изготовления и контроля детали.

Сведения о материале деталей На чертежах деталей приводят сведения о материале, из которого изготовлена деталь. Детали машин и механизмов, различные устройства и сооружения изготавливают из самых разнообразных материалов и неметаллических материалов.

Сборочные чертежи выполняются с упрощениями, предусмотренными стандартами ЕСКД для всех видов чертежей, а также с дополнительными условностями и упрощениями, установленными ГОСТ 2.109- 73 специально для сборочных чертежей

 После того как на сборочном чертеже выполнены необходимые tизображения, составляется спецификация. тСпецификация – это основной конструкторский документ, определяющий состав сборочной единицы. Она необходима для комплектования, изготовления и запуска изделия в производство.

Нанесение размеров на сборочном чертеже

Техническая механика — комплексная дисциплина. Она включает три раздела: «Теоретическая механика», «Сопротивление материалов», «Детали машин». «Теоретическая механика» — раздел, в котором излагаются основные законы движения твердых тел и их взаимодействия. В разделе «Сопротивление материалов» изучаются основы прочности материалов и методы расчетов элементов конструкций на прочность, жесткость и устойчивость под действием внешних сил. В заключительном разделе «Технической механики» «Детали машин» рассматриваются основы конструирования и расчета деталей и сборочных единиц общего назначения.

Шарнирная опора

Порядок построения многоугольника сил

Плоская система сходящихся сил

Парой сил называется система двух сил, равных по модулю, параллельных и направленных в разные стороны.

Плоская система произвольно расположенных сил

Балочные системы

Пространственная система сил Знать момент силы относительно оси, свойства момента, аналитический способ определения равнодействующей, условия равновесия пространственной системы сил.

Центр тяжести Иметь представление о системе параллельных сил и центре системы параллельных сил, о силе тяжести и центре тяжести.

Основные понятия кинематики

Кинематика точки Иметь представление о скоростях средней и истинной, об ускорении при прямолинейном и криволинейном движениях, о различных видах движения точки.

Простейшие движения твердого тела Иметь представление о поступательном движении, его особенностях и параметрах, о вращательном движении тела и его параметрах.

Основные понятия и аксиомы динамики. Понятие о трении тИметь представление о массе тела и ускорении свободного падения, о связи между силовыми и кинематическими параметрами движения, о двух основных задачах динамики.

Движение материальной точки

Работа и мощность Иметь представление о работе силы при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, о коэффициенте полезного действия.

Коэффициент полезного действия Иметь представление о мощности при прямолинейном и криволинейном перемещениях, о мощности полезной и затраченной, коэффициенте полезного действия

«Сопротивление материалов» — это раздел «Технической механики», в котором излагаются теоретико-экспериментальные основы и методы расчета наиболее распространенных элементов конструкций на прочность, жесткость и устойчивость.

Нагрузки внешние и внутренние, метод сечений

Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр

Ступенчатый брус нагружен вдоль оси двумя силами. Брус защемлен с левой стороны. Пренебрегая весом бруса, построить эпюры продольных сил и нормальных напряжений.

Механические испытания, механические характеристики

Практические расчеты на срез и смятие. Основные предпосылки расчетов и расчетные формулы ьИметь представление об основных предпосылках и условностях расчетов о деталях, работающих на срез и смятие.

Геометрические характеристики плоских сечений Иметь представление о физическом смысле и порядке определения осевых, центробежных и полярных моментов инерции, о главных центральных осях и главных центральных моментах инерции.

Внутренние силовые факторы при кручении

Кручение. Напряжения и деформации при кручении

Классификация видов изгиба

Построение эпюр поперечных сил и изгибающих моментов.

Нормальные напряжения при изгибе. Расчеты на прочность Знать распределение нормальных напряжений по сечению балки при чистом изгибе, расчетные формулы и условия прочности.

Сочетание основных деформаций. Гипотезы прочностиь Иметь представление о напряженном состоянии в точке упругого тела, о теории предельных напряженных состояний, об эквивалентном напряженном состоянии, о гипотезах прочности.

Расчет бруса круглого поперечного

Устойчивость сжатых стержней. Иметь представление об устойчивых и неустойчивых формах равновесия, критической силе и коэффициенте запаса устойчивости, о критическом напряжении, гибкости стержня и предельной гибкости.

Сопротивление усталости