Выполнение сборочного чертежа Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную

Плоская система произвольно расположенных сил

Иметь представление о главном векторе, главном моменте, равнодействующей плоской системы произвольно расположенных сил.

Знать теорему Пуансо о приведении силы к точке, приведение произвольной плоской системы сил к точке, три формы уравнений равновесия.

Уметь заменять произвольную плоскую систему сил одной силой и одной парой.

Теорема Пуансо о параллельном переносе сил Способ концентрических сфер Предварительно скажем несколько слов о пересечении соосных поверхностей, т.е. поверхностей, имеющих общую ось вращения.

Силу можно перенести параллельно линии ее действия, при этом нужно добавить пару сил с моментом, равным произведению модуля силы на расстояние, на которое перенесена сила.

Рис.5.1

Дано: сила в точке А (рис. 5.1).

Добавим в точке В уравновешенную систему сил (F’; F”). Образуется пара сил (F; F”). Получим силу в точке В и момент пары m.

Приведение к точке плоской системы

произвольно расположенных сил

Линии действия произвольной системы сил не пересекаются в одной точке, поэтому для оценки состояния тела такую систему следует упростить. Для этого все силы системы переносят в одну произвольно выбранную точку — точку приведения. Применяют теорему Пуансо. При любом переносе силы в точку, не лежащую на линии ее действия, добавляют пару сил.

Появившиеся при переносе пары называют присоединенными парами.

Дана плоская система произвольно расположенных сил (рис. 5.2).

Переносим все силы в точку О. Получим пучок сил в точке О, который можно заменить одной силой — главным вектором системы. Образующуюся систему пар сил можно заменить одной эквивалентной парой — главным моментом системы.

Рис. 5.2

Главный вектор равен геометрической сумме векторов произвольной плоской системы сил. Проецируем все силы системы на оси координат и, сложив соответствующие проекции на оси, получим проекции главного вектора.

По величине проекций главного вектора на оси координат находим модуль главного вектора:

Главный момент системы сил равен алгебраической сумме моментов сил системы относительно точки приведения.

 МглO = m1 + m2 + m3 + … + mn;

  

Таким образом, произвольная плоская система сил приводится к одной силе (главному вектору системы сил) и одному моменту (главному моменту системы сил).

Частные случаи приведения системы сил к точке

При приведении системы сил к точке возможны следующие варианты:

1. Fгл = 0

 МглО ≠ 0

 тело вращается вокруг неподвижной оси.

2. МглО = 0

 Fгл ≠ 0; Fгл = FΣ

 тело движется прямолинейно ускоренно.

3. МглО = 0

 Fгл = 0

 тело находится в равновесии.

Условие равновесия произвольной плоской

системы сил

1.  При равновесии главный вектор системы равен нулю (Fгл = 0).

Аналитическое определение главного вектора приводит к выводу:

где Fkx и Fky — проекции векторов на оси координат.

2. Поскольку точка приведения выбрана произвольно, ясно, что при равновесии сумма моментов сил системы относительно любой точки на плоскости должна равняться нулю:

где А и В — разные точки приведения.

Условие равновесия произвольной плоской системы сил может быть сформулировано следующим образом:

Для того чтобы твердое тело под действием произвольной плоской системы сил находилось в равновесии, необходимо и достаточно, чтобы алгебраическая сумма проекций всех сил системы на любую ось равнялась нулю и алгебраическая сумма моментов всех сил системы относительно любой точки в плоскости действия сил равнялась нулю.

Получим основную форму уравнения равновесия:

{

}

уравнения моментов.

Теоретически уравнений моментов можно записать бесконечное множество, но практически доказано, что на плоскости можно составить только три независимых уравнения моментов и при этом три точки (центры моментов) не должны лежать на одной линии.

Таким образом, имеем пять независимых уравнений равновесия.

Практически для решения задач на плоскости достаточно трех уравнений равновесия. В каждом конкретном случае используются уравнения с одним неизвестным.

Для разных случаев используются три группы уравнений равновесия.

Первая формула уравнений равновесия:

{

Вторая формула уравнений равновесия:

{

Третья формула уравнений равновесия:

{

Для частного случая, если уравновешенная система параллельных сил, можно составить только два уравнения равновесия:

 

Ось Ох системы координат параллельна линии действия сил.


Контрольные вопросы и задания

1. Чему равен главный вектор системы сил?

2. Чему равен главный момент системы сил при приведении ее к точке?

3. Какое еще уравнение равновесия нужно составить, чтобы убедиться в том, что система сил (рис. 5.7) находится в равновесии?

 

Рис.

В пределах каждой категории стандартов запись рекомендуется производить по группам изделий, объединенных по их функциональному назначению (крепежные изделия, подшипники, электротехнические изделия и т.п.); в пределах каждой группы - в алфавитном порядке наименований изделий; в пределах каждого наименования - в порядке возрастания обозначений стандартов, а в пределах каждого обозначения стандарта - в порядке возрастания основных параметров или размеров изделия.
Оформление чертежа