Выполнение сборочного чертежа Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную

Движение материальной точки.

Метод кинетостатики

Иметь представление о свободных и несвободных материальных точках, о силах инерции, об использовании силы инерции для решения технических задач.

Знать формулы для расчета силы инерции при поступательном и вращательном движениях, знать принцип Даламбера и уметь определять параметры движения с использованием законов динамики и метода кинетостатики.

Свободная и несвободная точки

Материальная точка, движение которой в пространстве не ограничено какими-нибудь связями, называется свободной. Задачи решаются с помощью основного закона динамики.

Материальные точки, движение которых ограничено связями, называются несвободными.

Для несвободных точек необходимо определять реакции связей. Эти точки движутся под действием активных сил и ограничивающих движение реакций связей (пассивных сил).

Несвободные материальные точки освобождаются от связей: связи заменяются их реакциями. Далее несвободные точки можно рассматривать как свободные (принцип освобождаемости от связей).

Сила инерции Растяжение и сжатие. Внутренние силовые факторы, напряжения. Построение эпюр Иметь представление о продольных силах, о нормальных напряжениях в поперечных сечениях.

Инертность — способность сохранять свое состояние неизменным, это внутреннее свойство всех материальных тел.

Сила инерции — сила, возникающая при разгоне или торможении тела (материальной точки) и направленная в обратную сторону от ускорения. Силу инерции можно измерить, она приложена к «связям» — телам, связанным с разгоняющимся или тормозящимся телом.

Рассчитано, что сила инерции равна

Fин = | ma |

Таким образом, силы, действующие на материальные точки m1 и m2 (рис. 14.1), при разгоне платформы соответственно равны

Fин1 = m1 а

Fин2 = m2 а

Разгоняющееся тело (плат форма с массой m (рис. 14.1) силу инерции не воспринимав! иначе разгон платформы вообще был бы невозможен.

При вращательном движении (криволинейном) возникающее ускорение приня-

Рис. 14.1

то представлять в виде двух составляющих: нормального ап и касательного at (рис. 14.2).

Рис. 14.2

Поэтому при рассмотрении криволинейного движения могут возникнуть две составляющие силы инерции: нормальная и касательная

a = at + an ;

;  at = ε r; ;

.

При равномерном движении по дуге всегда возникает нормальное ускорение, касательное ускорение равно нулю, поэтому действует только нормальная составляющая силы инерции, направленная по радиусу из центра дуги (рис. 14.3).

ω = const ;

Рис. 14.3

Принцип кинетостатики (принцип Даламбера)

Принцип кинетостатики используют для упрощения решения ряда технических задач.

Реально силы инерции приложены к телам, связанным с разгоняющимся телом (к связям).

Даламбер предложил условно прикладывать силу инерции к активно разгоняющемуся телу. Тогда система сил, приложенных к материальной точке, становится уравновешенной, и можно при решении задач динамики использовать уравнения статики.

Принцип Даламбера:

Материальная точка под действием активных сил, реакций связей и условно приложенной силы инерции находится в равновесии:

;  Fин = - m a.

Порядок решения задач с использованием принципа Даламбера

Составить расчетную схему.

Выбрать систему координат.

Выяснить направление и величину ускорения.

Условно приложить силу инерции.

Составить систему уравнений равновесия.

Определить неизвестные величины.


Контрольные вопросы и задания

1. Объясните разницу между понятиями «инертность» и «сила
инерции».

2. К каким телам приложена сила инерции, как направлена и по
какой формуле может быть рассчитана?

3. В чем заключается принцип кинетостатики?

4. Задано уравнение движения материальной точки S = 8,6t2. Определите ускорение точки в конце десятой секунды движения.

5. Тело движется вниз по наклонной плоскости (рис. 14.10). На несите силы, действующие на тело; используйте принцип Даламбера, запишите уравнение равновесия.

Рис. 14.10

6. Лифт спускается вниз с ускорением (рис. 14.11). Нанесите силы, действующие на кабину лифта, используя принцип кинетостатики, запишите уравнения равновесия

Рис. 14.11

Рис. 14.12

7. Автомобиль въезжает на арочный мост с постоянной скоростью v (рис. 14.12). Нанесите силы, действующие на автомобиль в середине моста, используя принцип кинетостатики, запишите уравнения равновесия.

В пределах каждой категории стандартов запись рекомендуется производить по группам изделий, объединенных по их функциональному назначению (крепежные изделия, подшипники, электротехнические изделия и т.п.); в пределах каждой группы - в алфавитном порядке наименований изделий; в пределах каждого наименования - в порядке возрастания обозначений стандартов, а в пределах каждого обозначения стандарта - в порядке возрастания основных параметров или размеров изделия.
Оформление чертежа