Методы расчета и анализа электрических цепей
Выполнение сборочного чертежа Магнитные цепи | Законы Кирхгофа | Расчёт электрических цепей | Расчёт трёхфазных цепей | Математика | Пределы | Векторная алгебра | Матрицы | Геометрия | Интегрирование | Задачи | Квантовая физика Резонанс Реакции Электротехника лекции | На главную

Изгиб.

Классификация видов изгиба.

Внутренние силовые факторы при изгибе

Иметь представление о видах изгиба и внутренних силовых факторах.

Знать методы для определения внутренних силовых факторов и уметь ими пользоваться для определения внутренних силовых факторов при прямом изгибе.

Основные определения

Изгибом называется такой вид нагружения, при котором в поперечном сечении бруса возникает внутренний силовой фактор изгибающий момент

Рис. 29.1

Брус, работающий на изгиб, называют балкой.

Изображен брус, закрепленный справа (защемление), нагруженный внешними силами и моментом (рис. 29.1).

Плоскость, в которой расположены внешние силы и моменты, называют силовой плоскостью.

Если все силы лежат в одной плоскости, изгиб называют плоским.

Плоскость, проходящая через продольную ось бруса и одну из главных центральных осей его поперечного сечения, называется главной плоскостью бруса.

Если силовая плоскость совпадает с главной плоскостью бруса, изгиб называют прямым (рис. 29.1).

Если силовая плоскость не проходит через главную плоскость бруса,

изгиб называют косым изгибом (рис. 29.2)

Рис. 29.2

Внутренние силовые факторы при изгибе

Пример 1. Рассмотрим балку, на которую действует пара сил с моментом т и внешняя сила F (рис. 29.3а). Для определения внутренних силовых факторов пользуемся методом сечений.

Рассмотрим равновесие участка 1 (рис. 29.36).

Под действием внешней пары сил участок стремится развернуться по часовой стрелке. Силы упругости, возникающие в сечении 1, удерживают участок в равновесии.

Продольные силы упругости выше оси бруса направлены на-

право, а силы ниже оси направлены налево. Таким образом, при равновесии участка 1 получим: ΣFz = 0. Продольная сила N в сечении равна нулю. Момент сил упругости относительно оси Ох может быть получен, если суммировать элементарные моменты сил упругости в сечении 1-1 относительно оси Ох:

.

Этот момент называют изгибающим моментом Мх = Ми.

Из схемы вала на рис. 29.36 видно, что часть волокон (выше оси) испытывают сжатие, а волокна ниже оси растянуты. Следовательно, в сечении должен существовать слой не растянутый и не сжатый, где напряжения а равны нулю.

Такой слой называют нейтральным слоем (НС). Линия пересечения нейтрального слоя с плоскостью поперечного сечения бруса называют нейтральной осью.

Нейтральный слой проходит через центр тяжести сечения. Здесь нейтральный слой совпадает с осью Ох.

Рис. 29.3

Практически величина изгибающего момента в сечении определяется из уравнения равновесия: .

Таким образом, в сечении 1-1 продольная сила равна нулю, изгибающий момент в сечении постоянен.

Изгиб, при котором в поперечном сечении бруса возникает только изгибающий момент, называется чистым изгибом.

Рассмотрим равновесие участка бруса от свободного конца до сечения 2 (рис. 29.Зв).

Запишем уравнения равновесия для участка бруса:

; ; .

В сечении бруса 2-2 действует поперечная сила, вызывающая сдвиг.

; .

Изгибающий момент в сечении: МХ2 = т - F(z2 - а);

z2 — расстояние от сечения 2 до начала координат.

Изгибающий момент зависит от расстояния сечения до начала координат.

Изгиб, при котором в поперечном сечении бруса возникает изгибающий момент и поперечная сила, называется поперечным изгибом.

Принятые в машиностроении знаки

поперечных сил и изгибающих моментов

Знаки поперечных сил

Рис. 29.4

Поперечная сила в сечении считается положительной, если она стремится развернуть сечение по часовой стрелке (рис. 29.4а), если против, - отрицательной (рис. 29.46).

Знаки изгибающих моментов

Если действующие на участке внешние силы стремятся изогнуть балку выпуклостью вниз, то изгибающий момент считается положительным (рис. 29.5а), если наоборот - отрицательным (рис. 29.56).

Рис. 29.5

Выводы

При чистом изгибе в поперечном сечении балки возникает только изгибающий момент, постоянный по величине.

При поперечном изгибе в сечении возникает изгибающий момент и поперечная сила.

Изгибающий момент в произвольном сечении балки численно равен алгебраической сумме моментов всех внешних сил, приложенных к отсеченной части, относительно рассматриваемого сечения.

Поперечная сила в произвольном сечении балки численно равна алгебраической сумме проекций всех внешних сил, действующих на отсеченной части на соответствующую ось.


Контрольные вопросы

1. Какую плоскость называют силовой?

2. Какой изгиб называют прямым? Что такое косой изгиб?

3. Какие силовые факторы возникают в сечении балки при чистом изгибе?

4. Какие силовые факторы возникают в сечении при поперечном изгибе?

В разделе "Прочие изделия" вносят нестандартные изделия, выбранные по каталогам, прейскурантам, техническим условиям и т.п. Запись изделий производят по однородным группам; в пределах каждой группы - в алфавитном порядке наименований изделий, а в пределах каждого наименования - в порядке возрастания основных параметров или размеров изделия.
Оформление чертежа